14:15
In this talk, I will describe recent work in the application of machine learning to explore questions in algebraic geometry, specifically in the context of the study of Q-Fano varieties. These are Q-factorial terminal Fano varieties, and they are the key players in the Minimal Model Program. In this work, we ask and answer if machine learning can determine if a toric Fano variety has terminal singularities. We build a high-accuracy neural network that detects this, which has two consequences. Firstly, it inspires the formulation and proof of a new global, combinatorial criterion to determine if a toric variety of Picard rank two has terminal singularities. Secondly, the machine learning model is used directly to give the first sketch of the landscape of Q-Fano varieties in dimension eight. This is joint work with Tom Coates and Al Kasprzyk.