Date
Tue, 15 Oct 2024
Time
14:00 - 15:00
Location
L4
Speaker
Alp Müyesser
Organisation
University of Oxford

We show that an $n$-vertex $k$-uniform hypergraph, where all $(k-1)$-subsets that are supported by an edge are in fact supported by at least $n/2+o(n)$ edges, contains a spanning $(k-1)$-dimensional sphere. This generalises Dirac's theorem, and confirms a conjecture of Georgakopoulos, Haslegrave, Montgomery, and Narayanan. Unlike typical results in the area, our proof does not rely on the absorption method or the regularity lemma. Instead, we use a recently introduced framework that is based on covering the vertex set of the host hypergraph with a family of complete blow-ups.

This is joint work with Freddie Illingworth, Richard Lang, Olaf Parczyk, and Amedeo Sgueglia.

Last updated on 8 Oct 2024, 8:15pm. Please contact us with feedback and comments about this page.