Seminar series
Date
Thu, 24 Oct 2024
13:00
13:00
Location
L6
Speaker
Klaus Hulek
Organisation
Hannover
A number of moduli problems are, via Hodge theory, closely related to
ball quotients. In this situation there is often a choice of possible
compactifications such as the GIT compactification´and its Kirwan
blow-up or the Baily-Borel compactification and the toroidal
compactificatikon. The relationship between these compactifications is
subtle and often geometrically interesting. In this talk I will discuss
several cases, including cubic surfaces and threefolds and
Deligne-Mostow varieties. This discussion links several areas such as
birational geometry, moduli spaces of pointed curves, modular forms and
derived geometry. This talk is based on joint work with S.
Casalaina-Martin, S. Grushevsky, S. Kondo, R. Laza and Y. Maeda.