Seminar series
Date
Thu, 19 Feb 2009
Time
17:00 - 18:00
Location
L3
Speaker
Gareth Boxall
Organisation
Leeds

Let T be a (one-sorted first order) geometric theory (so T

has infinite models, T eliminates "there exist infinitely many" and

algebraic closure gives a pregeometry). I shall present some results

about T_P, the theory of lovely pairs of models of T as defined by

Berenstein and Vassiliev following earlier work of Ben-Yaacov, Pillay

and Vassiliev, of van den Dries and of Poizat. I shall present

results concerning superrosiness, the independence property and

imaginaries. As far as the independence property is concerned, I

shall discuss the relationship with recent work of Gunaydin and

Hieronymi and of Berenstein, Dolich and Onshuus. I shall also discuss

an application to Belegradek and Zilber's theory of the real field

with a subgroup of the unit circle. As far as imaginaries are

concerned, I shall discuss an application of one of the general

results to imaginaries in pairs of algebraically closed fields,

adding to Pillay's work on that subject.

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.