Date
Tue, 27 Jan 2009
Time
14:30 - 15:30
Location
L3
Speaker
Graham Brightwell
Organisation
LSE

Random partial orders and random linear extensions

Several interesting models of random partial orders can be described via a

process that builds the partial order one step at a time, at each point

adding a new maximal element. This process therefore generates a linear

extension of the partial order in tandem with the partial order itself. A

natural condition to demand of such processes is that, if we condition on

the occurrence of some finite partial order after a given number of steps,

then each linear extension of that partial order is equally likely. This

condition is called "order-invariance".

The class of order-invariant processes includes processes generating a

random infinite partial order, as well as those that amount to taking a

random linear extension of a fixed infinite poset.

Our goal is to study order-invariant processes in general. In this talk, I

shall explain some of the problems that need to be resolved, and discuss

some of the combinatorial problems that arise.

(joint work with Malwina Luczak)

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.