Date
Tue, 11 Feb 2025
Time
14:00 - 15:00
Location
L4
Speaker
Dmitrii Zakharov
Organisation
Massachusetts Institute of Technology

Upper bounds on the number of incidences between points and lines, tubes, and other geometric objects, have many applications in combinatorics and analysis. On the other hand, much less is known about lower bounds. We prove a general lower bound for the number of incidences between points and tubes in the plane under a natural spacing condition. In particular, if you take $n$ points in the unit square and draw a line through each point, then there is a non-trivial point-line pair with distance at most $n^{-2/3+o(1)}$. This quickly implies that any $n$ points in the unit square define a triangle of area at most $n^{-7/6+o(1)}$, giving a new upper bound for the Heilbronn's triangle problem.

Joint work with Alex Cohen and Cosmin Pohoata.

Last updated on 16 Jan 2025, 1:36pm. Please contact us with feedback and comments about this page.