Seminar series
Date
Thu, 13 Feb 2025
17:00
Location
L3
Speaker
Pablo Andujar Guerrero
Organisation
University of Leeds

The open core of a structure is the reduct generated by the open definable sets. Tame topological structures (e.g. o-minimal) are often inter-definable with their open core. Structures such as M = (ℝ,<, +, ℚ) are wild in the sense that they define a dense co-dense set. Still, M is NIP and its open core is o-minimal. In this talk, we push forward the thesis that the open core of an NTP2 (a generalization of NIP) topological structure is tame. Our main result is that, under suitable conditions, the open core has quantifier elimination (every definable set is constructible), and its definable functions are generically continuous.

Last updated on 6 Feb 2025, 2:40pm. Please contact us with feedback and comments about this page.