Seminar series
Date
Thu, 20 Feb 2025
17:00
17:00
Location
L6
Speaker
Nico Cavalleri
Organisation
UCL
We develop a new construction of complete non-compact 8-manifolds with holonomy equal to $\Spin(7)$. As a consequence of the holonomy reduction, these manifolds are Ricci-flat. These metrics are built on the total spaces of principal $T^2$-bundles over asymptotically conical Calabi Yau manifolds. The resulting metrics have a new geometry at infinity that we call asymptotically $T^2$-fibred conical ($AT^2C$) and which generalizes to higher dimensions the ALG metrics of 4-dimensional hyperkähler geometry. We use the construction to produce infinite diffeomorphism types of $AT^2C$ $\Spin(7)$-manifolds and to produce the first known example of complete toric $\Spin(7)$-manifold.