Date
Mon, 23 Feb 2009
15:45
Location
Oxford-Man Institute
Speaker
Dr Victor Kleptsyn
Organisation
Université de Rennes

Given a foliation of a compact manifold, leaves of which are equipped with a Riemannian metric, one can consider the associated "leafwise"

Brownian motion, and study its asymptotic properties (such as asymptotic distribution, behaviour of holonomy maps, etc.).

Lucy Garnet studied such measures, introducing the notion of a harmonic measure -- stationary measure of this process; the name "harmonic" comes from the fact that a measure is stationary if and only if with respect to it integral of every leafwise Laplacian of a smooth function equals zero (so, the measure is "harmonic" in the sense of distributions).

It turns out that for a transversally conformal foliation, unless it possesses a transversally invariant measure (which is a rather rare case), the associated random dynamics can be described rather precisely. Namely, for every minimal set in the foliation there exists a unique harmonic measure supported on it -- and this gives all the possible ergodic harmonic measures (in particular, there is a finite number of them, and they are always supported on the minimal sets).

Also, the holonomy maps turn out to be (with probability one) exponentially contracting -- so, the Lyapunov exponent of the dynamics is negative. Finally, for any initial point almost every path tends to one of the minimal sets and is asymptotically distributed with respect to the corresponding harmonic measure -- and the functions defining the probabilities of tending to different sets form a base in the space of continuous leafwise harmonic functions.

An interesting effect that is a corollary of this consideration is that for transversally conformal foliations the number of the ergodic harmonic measures does not depend on the choice of Riemannian metric on the leaves. This fails for non-transversally conformal foliations:

there is an example, recently constructed in a joint with S.Petite (following B.Deroin's technique).

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.