14:15
Complex dynamics is the study of the behaviour, under iteration, of complex polynomials and rational functions. This talk is about an application of combinatorial algebraic geometry to complex dynamics. The n-th Gleason polynomial G_n is a polynomial in one variable with Z-coefficients, whose roots correspond to degree-2 polynomials with an n-periodic critical point. Per_n is a (nodal) Riemann surface parametrizing degree-2 rational functions with an n-periodic critical point. Two long-standing open questions are: (1) Is G_n is irreducible over Q? (2) Is Per_n connected? I will sketch an argument showing that if G_n is irreducible over Q, then Per_n is connected. In order to do this, we find a special degeneration of degree-2 rational maps that tells us that Per_n has smooth point with Q-coordinates "at infinity”.