Date
Fri, 30 May 2025
Time
11:00 - 12:00
Location
L4
Speaker
Professor Suzanne Fielding
Organisation
Dept of Physics Durham University

The rheological (deformation and flow) properties of biological tissues  are important in processes such as embryo development, wound healing and 
tumour invasion. Indeed, processes such as these spontaneously generate  stresses within living tissue via active process at the single cell level. 
Tissues are also continually subject to external stresses and deformations  from surrounding tissues and organs. The success of numerous physiological 
functions relies on the ability of cells to withstand stress under some conditions, yet to flow collectively under others. Biological tissue is 
furthermore inherently viscoelastic, with a slow time-dependent mechanics.  Despite this rich phenomenology, the mechanisms that govern the 
transmission of stress within biological tissue, and its response to bulk deformation, remain poorly understood to date.

This talk will describe three recent research projects in modelling the rheology of biological tissue. The first predicts a strain-induced 
stiffening transition in a sheared tissue [1]. The second elucidates the interplay of external deformations applied to a tissue as a whole with 
internal active stresses that arise locally at the cellular level, and shows how this interplay leads to a host of fascinating rheological 
phenomena such as yielding, shear thinning, and continuous or discontinuous shear thickening [2]. The third concerns the formulation of 
a continuum constitutive model that captures several of these linear and nonlinear rheological phenomena [3].

[1] J. Huang, J. O. Cochran, S. M. Fielding, M. C. Marchetti and D. Bi, 
Physical Review Letters 128 (2022) 178001

[2] M. J. Hertaeg, S. M. Fielding and D. Bi, Physical Review X 14 (2024) 
011017.

[3] S. M. Fielding, J. O. Cochran, J. Huang, D. Bi, M. C. Marchetti, 
Physical Review E (Letter) 108 (2023) L042602.

Last updated on 26 Mar 2025, 10:37am. Please contact us with feedback and comments about this page.