Date
Fri, 13 Jun 2025
Time
11:00 - 12:00
Location
L4
Speaker
Professor Michael Ward
Organisation
Dept of Mathematics University of British Columbia

We investigate pattern formation for a 2D PDE-ODE bulk-cell model, where one or more bulk diffusing species are coupled to nonlinear intracellular
reactions that are confined within a disjoint collection of small compartments. The bulk species are coupled to the spatially segregated
intracellular reactions through Robin conditions across the cell boundaries. For this compartmental-reaction diffusion system, we show that
symmetry-breaking bifurcations leading to stable asymmetric steady-state patterns, as regulated by a membrane binding rate ratio, occur even when
two bulk species have equal bulk diffusivities. This result is in distinct contrast to the usual, and often biologically unrealistic, large
differential diffusivity ratio requirement for Turing pattern formation from a spatially uniform state. Secondly, for the case of one-bulk
diffusing species in R^2, we derive a new memory-dependent ODE integro-differential system that characterizes how intracellular
oscillations in the collection of cells are coupled through the PDE bulk-diffusion field. By using a fast numerical approach relying on the
``sum-of-exponentials'' method to derive a time-marching scheme for this nonlocal system, diffusion induced synchrony is examined for various
spatial arrangements of cells using the Kuramoto order parameter. This theoretical modeling framework, relevant when spatially localized nonlinear
oscillators are coupled through a PDE diffusion field, is distinct from the traditional Kuramoto paradigm for studying oscillator synchronization on
networks or graphs. (Joint work with Merlin Pelz, UBC and UMinnesota).

Last updated on 26 Mar 2025, 10:59am. Please contact us with feedback and comments about this page.