Seminar series
Date
Wed, 28 May 2025
16:00
16:00
Location
L6
Speaker
Alex Epelde Blanco
Organisation
Harvard University
In the definition of the skein lasagna module of a $4$-manifold $X$, it is essential that the input TQFT be fully functorial for link cobordisms in $S^3 \times [0, 1]$. I will describe an approach to resolve existing sign ambiguities in Kronheimer and Mrowka's spectral sequence from Khovanov homology to singular instanton link homology. The goal is to obtain a theory that is fully functorial for link cobordisms in $S^3 \times [0,1]$, and where the $E_2$ page carries a canonical isomorphism to Khovanov-Rozansky $\mathfrak{gl}_2$ link homology. Possible applications include non-vanishing theorems for $4$-manifold Khovanov skein lasagna modules à la Ren-Willis.