Date
Thu, 22 May 2025
Time
12:00 - 12:30
Location
L4
Speaker
Arselane Hadj Slimane
Organisation
ENS Paris-Saclay

Shape optimization is a rich field at the intersection of analysis, optimization, and engineering. It seeks to determine the optimal geometry of structures to minimize performance objectives, subject to physical constraints—often modeled by Partial Differential Equations (PDEs). Traditional approaches commonly assume that these constraints admit a unique solution for each candidate shape, implying a single-valued shape-to-solution map. However, many real-world structures exhibit multistability, where multiple stable configurations exist under identical physical conditions.

This research departs from the single-solution paradigm by investigating shape optimization in the presence of multiple solutions to the same PDE constraints. Focusing on a neo-Hookean hyperelastic model, we formulate an optimization problem aimed at controlling the energy jump between distinct solutions. Drawing on bifurcation theory, we develop a theoretical framework that interprets these solutions as continuous branches parameterized by shape variations. Building on this foundation, we implement a numerical optimization strategy and present numerical results that demonstrate the effectiveness of our approach.

Last updated on 19 May 2025, 12:59pm. Please contact us with feedback and comments about this page.