Date
Fri, 21 Nov 2025
Time
11:00 - 12:00
Location
L4
Speaker
Professor Alex Fletcher
Organisation
School of Mathematical and Physical Sciences University of Sheffield

The development of a complex functional multicellular organism from a single cell involves tightly regulated and coordinated cell behaviours coupled through short- and long-range biochemical and mechanical signals. To truly comprehend this complexity, alongside experimental approaches we need mathematical and computational models, which can link observations to mechanisms in a quantitative, predictive, and experimentally verifiable way. In this talk I will describe our efforts to model aspects of embryonic development, focusing in particular on the planar polarised behaviours of cells in epithelial tissues, and discuss the mathematical and computational challenges associated with this work. I will also highlight some of our work to improve the reproducibility and re-use of such models through the ongoing development of Chaste (https://github.com/chaste), an open-source C++ library for multiscale modelling of biological tissues and cell populations.

Last updated on 10 Oct 2025, 2:24pm. Please contact us with feedback and comments about this page.