Date
Mon, 20 Oct 2025
14:15
Location
L4
Speaker
Claude LeBrun
Organisation
Stony Brook University

A Riemannian metric is said to be  Einstein if it has constant Ricci curvature. In dimensions 2 or 3, this is actually equivalent to requiring the metric to have constant sectional curvature. However,  in dimensions 4 and higher, the Einstein condition becomes significantly weaker than constant sectional curvature, and this has rather dramatic consequences. In particular, it turns out that there are  high-dimensional smooth closed manifolds that admit pairs of Einstein metrics with Ricci curvatures of opposite signs. After explaining how one constructs such examples, I will then discuss some recent results exploring the coexistence of Einstein metrics with zero and positive Ricci curvatures.

Last updated on 3 Oct 2025, 8:37pm. Please contact us with feedback and comments about this page.