Date
Mon, 15 Jun 2009
14:15
Location
Oxford-Man Institute
Speaker
Professor Andrew Stuart
Organisation
University of Warwick

Diffusion limits of MCMC methods in high dimensions provide a useful theoretical tool for studying efficiency.

In particular they facilitate precise estimates of the number of steps required to explore the target measure, in stationarity, as a function of the dimension of the state space. However, to date such results have only been proved for target measures with a product structure, severely limiting their applicability to real applications. The purpose of this talk is to desribe a research program aimed at identifying diffusion limits for a class of naturally occuring problems, found by finite dimensional approximation of measures on a Hilbert space which are absolutely continuous with respect to a Gaussian reference measure.

The diffusion limit to a Hilbert space valued SDE (or SPDE) is proved.

Joint work with Natesh Pillai (Warwick) and Jonathan Mattingly (Duke)

Last updated on 6 May 2025, 2:04pm. Please contact us with feedback and comments about this page.