Seminar series
Date
Mon, 21 Sep 2009
16:30
Location
DH 1st floor SR
Speaker
Jack Cowan
Organisation
University of Chicago

We have recently found a way to describe large-scale neural

activity in terms of non-equilibrium statistical mechanics.

This allows us to calculate perturbatively the effects of

fluctuations and correlations on neural activity. Major results

of this formulation include a role for critical branching, and

the demonstration that there exist non-equilibrium phase

transitions in neocortical activity which are in the same

universality class as directed percolation. This result leads

to explanations for the origin of many of the scaling laws

found in LFP, EEG, fMRI, and in ISI distributions, and

provides a possible explanation for the origin of various brain

waves. It also leads to ways of calculating how correlations

can affect neocortical activity, and therefore provides a new

tool for investigating the connections between neural

dynamics, cognition and behavior

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.