Date
Thu, 20 Nov 2025
14:30
Location
L4
Speaker
David Loeffler
Organisation
UniDistance Suisse

The machinery of Euler systems (originating in the work of Kolyvagin and Thaine in the late 1980s) is an extremely powerful tool for studying the cohomology of Galois representations, and hence for attacking big conjectures such as Birch–Swinnerton-Dyer. However, current approaches to this theory require the Galois representation to satisfy some sort of "ordinarity" condition, which is a serious restriction in applications. I will discuss recent joint work with Sarah Zerbes in which we extend the Euler system machine to cover situations where this ordinary condition doesn't hold, using a surprising new ingredient (adapted from earlier work of Naomi Sweeting): non-principal ultrafilters, which serve to keep track of the sequences of auxiliary primes arising in Kolyvagin's argument. Applications of this theory, including new cases of the Iwasawa main conjecture, will be discussed in Sarah's talk later the same afternoon.

Last updated on 10 Nov 2025, 9:12am. Please contact us with feedback and comments about this page.