Date
Tue, 02 Dec 2025
15:30
Location
L4
Speaker
Naoki Koseki
Organisation
Liverpool

In the 1990s, physicists introduced an ideal way to count curves inside a Calabi-Yau 3-fold, called the Gopakumar-Vafa (GV) theory. Building on several previous attempts, Maulik-Toda recently gave a mathematical rigorous definition of the GV invariants. We expect that the GV invariants and the Gromov-Witten (GW) invariants are related by an explicit formula, but this stands as a challenging open problem. In this talk, I will explain recent mathematical developments on the GV theory, especially for local curves, including the cohomological chi-independence theorem and the GV/GW correspondence in a special case.

Last updated on 18 Nov 2025, 12:17pm. Please contact us with feedback and comments about this page.