17:00
Pfaffian functions, and by extension Pfaffian and semi-Pfaffian sets, play a crucial role in various areas of mathematics, including o-minimal theory. Incidence combinatorics has recently experienced a surge of activity, fuelled by the introduction of the polynomial partitioning method of Guth and Katz. While traditionally restricted to simple geometric objects such as points and lines, focus has shifted towards incidence questions involving higher dimensional algebraic or semi-algebraic sets. We present a generalization of the polynomial partitioning method to semi-Pfaffian sets and illustrate how this leads to Pfaffian generalizations of classic results in incidence geometry, such as the Szemerédi-Trotter Theorem. Finally, we outline an application of semi-Pfaffian geometry and Khovanskii's bound to the robustness of neural networks.