Date
Tue, 11 Nov 2025
Time
14:00 - 15:00
Location
L4
Speaker
Jeck Lim
Organisation
University of Oxford

Given a set $A$ and a scalar $\lambda$, how large must the sum of dilate $A+\lambda\cdot A=\{a+\lambda a'\mid a,a'\in A\}$ be in terms of $|A|$? In this talk, we will discuss two different settings of this problem, and how they relate to each other.

  • For transcendental $\lambda\in \mathbb{C}$ and $A\subset \mathbb{C}$, how does $|A+\lambda\cdot A|$ grow with $|A|$?
  • For a fixed large $\lambda\in \mathbb{Z}$ and even larger prime $p$, with $A\subset \mathbb{Z}/p\mathbb{Z}$, how does the density of $A+\lambda\cdot A$ depend on the density of $A$?

Joint with David Conlon.

Last updated on 6 Nov 2025, 7:51pm. Please contact us with feedback and comments about this page.