16:00
The Deligne-Beilinson conjecture predicts that the special values of many L-functions are related to the ranks of certain Ext groups in the category of mixed Hodge structures. In this talk, we present Skinner’s constructions of certain extensions that are extracted from the cohomology of the modular curve using CM points and the Eisenstein series. Through an explicit analytic calculation, which is performed in the adelic setting using (g,K)-cohomology and Tate’s zeta integrals, we obtain a formula relating the non-triviality of these extensions to the well-known non-vanishing at s=1 of the L-functions associated to Hecke characters of imaginary quadratic fields. These constructions have natural analogs in the category of p-adic Galois representations which are useful for Euler systems.