Date
Mon, 25 Jan 2010
15:45
Location
Eagle House
Speaker
Anne De Bouard
Organisation
Ecole Polytechnique

In this talk, we will focus on the asymptotic behavior in time of the solution of a model equation for Bose-Einstein condensation, in the case where the trapping potential varies randomly in time.

The model is the so called Gross-Pitaevskii equation, with a quadratic potential with white noise fluctuations in time whose amplitude tends to zero.

The initial condition is a standing wave solution of the unperturbed equation We prove that up to times of the order of the inverse squared amplitude the solution decomposes into the sum of a randomly modulatedmodulation parameters.

In addition, we show that the first order of the remainder, as the noise amplitude goes to zero, converges to a Gaussian process, whose expected mode amplitudes concentrate on the third eigenmode generated by the Hermite functions, on a certain time scale, as the frequency of the standing wave of the deterministic equation tends to its minimal value.

Last updated on 6 May 2025, 2:04pm. Please contact us with feedback and comments about this page.