Date
Tue, 27 Apr 2010
Time
15:45 - 16:45
Location
L3
Speaker
Jonny Evans
Organisation
Cambridge

Lagrangian submanifolds are an important class of objects in symplectic geometry. They arise in diverse settings: as vanishing cycles in complex algebraic geometry, as invariant sets in integrable systems, as Heegaard tori in Heegaard-Floer theory and of course as "branes" in the A-model of mirror symmetry. We ask the difficult question: when are two Lagrangian submanifolds isotopic? Restricting to the simplest case of Lagrangian spheres in rational surfaces we will give examples where this question has a complete answer. We will also give some very pictorial examples (due to Seidel) illustrating how two Lagrangians can fail to be isotopic.

Last updated on 6 May 2025, 2:04pm. Please contact us with feedback and comments about this page.