17:00
Chirality, the property that an object cannot be superimposed on its mirror image, arises across all scientific disciplines, yet its ultimate origin remains one of the central open questions in Nature. Both fundamental and elusive, chirality plays a decisive role in shaping the structure and behaviour of natural systems. Starting from its classical geometric definition and the long-standing challenge of defining meaningful measures of chirality, this talk develops a natural extension of the concept to field theories by examining the physical response of chiral bodies immersed in fluid flows. This framework leads to a further novel concept in which chirality is attached not only to objects, but also to their smooth deformations. I will address the general problems of chirality, its quantification, and its transfer across scales, trace their historical development, and illustrate the theory through examples drawn from fluid mechanics, chemistry, and biology, revealing unifying principles with some surprising twists.