Journal title
Annales de l'Institut Henri Poincaré C, Analyse non linéaire
DOI
10.4171/aihpc/173
Last updated
2026-02-03T15:47:42.513+00:00
Abstract
<jats:p>
We consider aggregation-diffusion equations with merely bounded nonlocal interaction potential
<jats:inline-formula>
<jats:tex-math>K</jats:tex-math>
</jats:inline-formula>
. We are interested in establishing their well-posedness theory when the nonlocal interaction potential
<jats:inline-formula>
<jats:tex-math>K</jats:tex-math>
</jats:inline-formula>
is neither differentiable nor positive (semi-)definite, thus preventing application of classical arguments. We prove the existence of weak solutions in two cases: if the mass of the initial data is sufficiently small, or if the interaction potential is symmetric and of bounded variation without any smallness assumption. The latter allows one to exploit the dissipation of the free energy in an optimal way, which is an entirely new approach. Remarkably, in both cases, under the additional condition that
<jats:inline-formula>
<jats:tex-math>\nabla K\ast K</jats:tex-math>
</jats:inline-formula>
is in
<jats:inline-formula>
<jats:tex-math>L^{2}</jats:tex-math>
</jats:inline-formula>
, we can prove that the strong solution is unique. When
<jats:inline-formula>
<jats:tex-math>K</jats:tex-math>
</jats:inline-formula>
is a characteristic function of a ball, we construct the classical unique solution. Under additional structural conditions we extend these results to the
<jats:inline-formula>
<jats:tex-math>n</jats:tex-math>
</jats:inline-formula>
-species system.
</jats:p>
We consider aggregation-diffusion equations with merely bounded nonlocal interaction potential
<jats:inline-formula>
<jats:tex-math>K</jats:tex-math>
</jats:inline-formula>
. We are interested in establishing their well-posedness theory when the nonlocal interaction potential
<jats:inline-formula>
<jats:tex-math>K</jats:tex-math>
</jats:inline-formula>
is neither differentiable nor positive (semi-)definite, thus preventing application of classical arguments. We prove the existence of weak solutions in two cases: if the mass of the initial data is sufficiently small, or if the interaction potential is symmetric and of bounded variation without any smallness assumption. The latter allows one to exploit the dissipation of the free energy in an optimal way, which is an entirely new approach. Remarkably, in both cases, under the additional condition that
<jats:inline-formula>
<jats:tex-math>\nabla K\ast K</jats:tex-math>
</jats:inline-formula>
is in
<jats:inline-formula>
<jats:tex-math>L^{2}</jats:tex-math>
</jats:inline-formula>
, we can prove that the strong solution is unique. When
<jats:inline-formula>
<jats:tex-math>K</jats:tex-math>
</jats:inline-formula>
is a characteristic function of a ball, we construct the classical unique solution. Under additional structural conditions we extend these results to the
<jats:inline-formula>
<jats:tex-math>n</jats:tex-math>
</jats:inline-formula>
-species system.
</jats:p>
Symplectic ID
2366525
Submitted to ORA
Off
Favourite
Off
Publication date
02 Feb 2026