Date
Mon, 31 Jan 2011
14:15
Location
Eagle House
Speaker
Masoumeh Dashti

Abstract: We consider the inverse problem of finding the diffusion coefficient of a linear uniformly elliptic partial differential equation in divergence form, from noisy measurements of the forward solution in the interior. We adopt a Bayesian approach to the problem. We consider the prior measure on the diffusion coefficient to be either a Besov or Gaussian measure. We show that if the functions drawn from the prior are regular enough, the posterior measure is well-defined and Lipschitz continuous with respect to the data in the Hellinger metric. We also quantify the errors incurred by approximating the posterior measure in a finite dimensional space. This is joint work with Stephen Harris and Andrew Stuart.

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.