Seminar series
Date
Wed, 16 Nov 2011
17:00
Location
L1
Speaker
Professor Vladimir Zakharov
Organisation
Department of Mathematics

The self-consistent analytic theory of the wind-driven sea can be developed due to the presence of small parameter, ratio of atmospheric and water densities. Because of low value of this parameter the sea is "weakly nonlinear" and the average steepness of sea surface is also relatively small. Nevertheless, the weakly nonlinear four-wave resonant interaction is the dominating process in the energy balance. The wind-driven sea can be described statistically in terms of the Hasselmann kinetic equation.

This equation has a rich family of Kolmogorov-type solutions perfectly describing "rear faces" of wave spectra right behind the spectral peak.

More short waves are described by steeper Phillips spectrum formed by ensemble of microbreakings. From the practical view-point the most important question is the spatial and temporal evolution of spectral peaks governed by self-similar solutions of the Hasselmann equation. This analytic theory is supported by numerous experimental data and computer

simulations.   

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.