Date
Tue, 15 Nov 2011
Time
14:30 - 15:30
Location
L3
Speaker
Wojciech Samotij
Organisation
Cambridge

We say that a hypergraph is \emph{stable} if each sufficiently large subset of its vertices either spans many hyperedges or is very structured. Hypergraphs that arise naturally in many classical settings posses the above property. For example, the famous stability theorem of Erdos and Simonovits and the triangle removal lemma of Ruzsa and Szemeredi imply that the hypergraph on the vertex set $E(K_n)$ whose hyperedges are the edge sets of all triangles in $K_n$ is stable. In the talk, we will present the following general theorem: If $(H_n)_n$ is a sequence of stable hypergraphs satisfying certain technical conditions, then a typical (i.e., uniform random) $m$-element independent set of $H_n$ is very structured, provided that $m$ is sufficiently large. The above abstract theorem has many interesting corollaries, some of which we will discuss. Among other things, it implies sharp bounds on the number of sum-free sets in a large class of finite Abelian groups and gives an alternate proof of Szemeredi’s theorem on arithmetic progressions in random subsets of integers.

Joint work with Noga Alon, Jozsef Balogh, and Robert Morris.

Please contact us with feedback and comments about this page. Last updated on 03 Apr 2022 01:32.