Relationships between several particle-based stochastic reaction-diffusion models

23 May 2012
10:15
Samuel Isaacson
Abstract
<p>Particle-based stochastic reaction-diffusion models have recently been used to study a number of problems in cell biology. These methods are of interest when both noise in the chemical reaction process and the explicit motion of molecules are important. Several different mathematical models have been used, some spatially-continuous and others lattice-based. In the former molecules usually move by Brownian Motion, and may react when approaching each other. For the latter molecules undergo continuous time random-walks, and usually react with fixed probabilities per unit time when located at the same lattice site.</p> <p>As motivation, we will begin with a brief discussion of the types of biological problems we are studying and how we have used stochastic reaction-diffusion models to gain insight into these systems. We will then introduce several of the stochastic reaction-diffusion models, including the spatially continuous Smoluchowski diffusion limited reaction model and the lattice-based reaction-diffusion master equation. Our work studying the rigorous relationships between these models will be presented. Time permitting, we may also discuss some of our efforts to develop improved numerical methods for solving several of the models.</p>
  • OCCAM Wednesday morning Events