Date
Tue, 12 Jun 2012
10:30
Location
Gibson 1st Floor SR
Speaker
Tim Adamo
Organisation
Oxford
Abstract: We'll try to learn something about Nekrasov's conjecture/theorem, which relates an instanton-counting partition function to the Seiberg-Witten prepotential of N=2 SYM theory on R^4. This will entail a review of some salient aspects of N=2 SYM theories, Witten's description of Donaldson invariants in terms of correlation functions in those theories, and the physical and mathematical definition of Nekrasov's partition function. Depending on time, I might talk about computational techniques for the partition function, methods of proof for Nekrasov's conjecture, or the partition function's role in the AGT conjectures.
Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.