Fri, 04 May 2018

13:00 - 14:00
L6

Talks by Phd Students

Leandro Sánchez Betancourt and Jasdeep Kalsi
Abstract

Leandro Sánchez Betancourt
--------------------------
The Cost of Latency: Improving Fill Ratios in Foreign Exchange Markets

Latency is the time delay between an exchange streaming market data to a trader, the trader processing information and deciding to trade, and the exchange receiving the order from the trader.  Liquidity takers  face  a  moving target problem as a consequence of their latency in the marketplace -- they send marketable orders that aim at a price and quantity they observed in the LOB, but by the time their order was processed by the Exchange, prices (and/or quantities) may have worsened, so the  order  cannot  be  filled. If liquidity taking orders can walk the limit order book (LOB), then orders that arrive late may still be filled at worse prices. In this paper we show how to optimally choose the discretion of liquidity taking orders to walk the LOB. The optimal strategy balances the tradeoff between the costs of walking the LOB and targeting  a desired percentage of filled orders over a period of time.  We employ a proprietary data set of foreign exchange trades to analyze the performance of the strategy. Finally, we show the relationship between latency and the percentage of filled orders, and showcase the optimal strategy as an alternative investment to reduce latency.

Jasdeep Kalsi
-------------
An SPDE model for the Limit Order Book

I will introduce a microscopic model for the Limit Order Book in a static setting i.e. in between price movements. Here, order flow at different price levels is given by Poisson processes which depend on the relative price and the depth of the book. I will discuss how reflected SPDEs can be obtained as scaling limits of such models. This motivates an SPDE with reflection and a moving boundary as a model for the dynamic Order Book. An outline for how to prove existence and uniqueness for the equation will be presented, as well as some simple simulations of the model.

Thu, 14 Jun 2018

16:00 - 17:30
L4

Machine Learning in Finance

Josef Teichmann
(ETH Zuerich)
Abstract

We present several instances of applications of machine
learning technologies in mathematical Finance including pricing,
hedging, calibration and filtering problems. We try to show that
regularity theory of the involved equations plays a crucial role
in designing such algorithms.

(based on joint works with Hans Buehler, Christa Cuchiero, Lukas
Gonon, Wahid Khosrawi-Sardroudi, Ben Wood)

Thu, 07 Jun 2018

16:00 - 17:30
L4

Large Deviations for McKean Vlasov Equations and Importance Sampling

Goncalo dos Reis
(University of Edinburgh)
Abstract


We discuss two Freidlin-Wentzell large deviation principles for McKean-Vlasov equations (MV-SDEs) in certain path space topologies. The equations have a drift of polynomial growth and an existence/uniqueness result is provided. We apply the Monte-Carlo methods for evaluating expectations of functionals of solutions to MV-SDE with drifts of super-linear growth.  We assume that the MV-SDE is approximated in the standard manner by means of an interacting particle system and propose two importance sampling (IS) techniques to reduce the variance of the resulting Monte Carlo estimator. In the "complete measure change" approach, the IS measure change is applied simultaneously in the coefficients and in the expectation to be evaluated. In the "decoupling" approach we first estimate the law of the solution in a first set of simulations without measure change and then perform a second set of simulations under the importance sampling measure using the approximate solution law computed in the first step. 

Thu, 24 May 2018

16:00 - 17:30
L4

Computation of optimal transport and related hedging problems via penalization and neural networks

Michael Kupper
(University of Konstanz)
Abstract

We present a widely applicable approach to solving (multi-marginal, martingale) optimal transport and related problems via neural networks. The core idea is to penalize the optimization problem in its dual formulation and reduce it to a finite dimensional one which corresponds to optimizing a neural network with smooth objective function. We present numerical examples from optimal transport, and bounds on the distribution of a sum of dependent random variables. As an application we focus on the problem of risk aggregation under model uncertainty. The talk is based on joint work with Stephan Eckstein and Mathias Pohl.

Thu, 17 May 2018

16:00 - 17:30
L4

Accounting for the Epps Effect: Realized Covariation, Cointegration and Common Factors

Jeremy Large
(Economics (Oxford University))
Abstract

High-frequency realized variance approaches offer great promise for 
estimating asset prices’ covariation, but encounter difficulties 
connected to the Epps effect. This paper models the Epps effect in a 
stochastic volatility setting. It adds dependent noise to a factor 
representation of prices. The noise both offsets covariation and 
describes plausible lags in information transmission. Non-synchronous 
trading, another recognized source of the effect, is not required. A 
resulting estimator of correlations and betas performs well on LSE 
mid-quote data, lending empirical credence to the approach.

Thu, 10 May 2018

16:00 - 17:30
L3

From maps to apps: the power of machine learning and artificial intelligence for regulators

Stefan Hunt
(Financial Conduct Authority)
Abstract

Abstract:
Highlights:

•We increasingly live in a digital world and commercial companies are not the only beneficiaries. The public sector can also use data to tackle pressing issues.
•Machine learning is starting to make an impact on the tools regulators use, for spotting the bad guys, for estimating demand, and for tackling many other problems.
•The speech uses an array of examples to argue that much regulation is ultimately about recognising patterns in data. Machine learning helps us find those patterns.
 
Just as moving from paper maps to smartphone apps can make us better navigators, Stefan’s speech explains how the move from using traditional analysis to using machine learning can make us better regulators.
 
Mini Biography:
 
Stefan Hunt is the founder and Head of the Behavioural Economics and Data Science Unit. He has led the FCA’s use of these two fields and designed several pioneering economic analyses. He is an Honorary Professor at the University of Nottingham and has a PhD in economics from Harvard University.
 

Thu, 03 May 2018

16:00 - 17:30
L4

Generalized McKean-Vlasov stochastic control problems

Beatrice Acciaio
(LSE)
Abstract

Title: Generalized McKean-Vlasov stochastic control problems.

Abstract: I will consider McKean-Vlasov stochastic control problems 
where the cost functions and the state dynamics depend upon the joint 
distribution of the controlled state and the control process. First, I 
will provide a suitable version of the Pontryagin stochastic maximum 
principle, showing that, in the present general framework, pointwise 
minimization of the Hamiltonian with respect to the control is not a 
necessary optimality condition. Then I will take a different 
perspective, and present a variational approach to study a weak 
formulation of such control problems, thereby establishing a new 
connection between those and optimal transport problems on path space.

The talk is based on a joint project with J. Backhoff-Veraguas and R. Carmona.

Thu, 26 Apr 2018

16:00 - 17:30
L4

Lévy forward price approach for multiple yield curves in presence of persistently low and negative interest rates

Zorana Grbac
(Paris)
Abstract

In this talk we present a framework for discretely compounding
interest rates which is based on the forward price process approach.
This approach has a number of advantages, in particular in the current
market environment. Compared to the classical Libor market models, it
allows in a natural way for negative interest rates and has superb
calibration properties even in the presence of persistently low rates.
Moreover, the measure changes along the tenor structure are simplified
significantly. This property makes it an excellent base for a
post-crisis multiple curve setup. Two variants for multiple curve
constructions will be discussed.

As driving processes we use time-inhomogeneous Lévy processes, which
lead to explicit valuation formulas for various interest rate products
using well-known Fourier transform techniques. Based on these formulas
we present calibration results for the two model variants using market
data for caps with Bachelier implied volatilities.

Subscribe to