Thu, 10 Nov 2016

16:00 - 17:30
L4

Solution of BSDEs: Error Expansion and Complexity Control.

Camilo Garcia
(UCL)
Abstract


Backward SDEs have proven to be a useful tool in mathematical finance. Their applications include the solution to various pricing and equilibrium problems in complete and incomplete markets, the estimation of value adjustments in the presence of funding costs, and the solution to many utility/risk optimisation type of problems.
In this work, we prove an explicit error expansion for the approximation of BSDEs. We focus our work on studying the cubature  method of solution. To profit fully from these expansions in this case, e.g. to design high order approximation methods, we need in addition to control the complexity growth of the base algorithm. In our work, this is achieved by using a sparse grid representation. We present several numerical results that confirm the efficiency of our new method. Based on joint work with J.F. Chassagneux.
 

Thu, 27 Oct 2016

16:00 - 17:30
L4
Thu, 20 Oct 2016

16:00 - 17:30
L4

Geometry of distribution constraint optimal stopping problems

Mathias Beiglboeck
(TU Wien)
Abstract

We show how to adapt methods originally developed in
model-independent finance / martingale optimal transport to give a
geometric description of optimal stopping times tau of Brownian Motion
subject to the constraint that the distribution of tau is a given
distribution. The methods work for a large class of cost processes.
(At a minimum we need the cost process to be adapted. Continuity
assumptions can be used to guarantee existence of solutions.) We find
that for many of the cost processes one can come up with, the solution
is given by the first hitting time of a barrier in a suitable phase
space. As a by-product we thus recover Anulova's classical solution of
the inverse first passage time problem.

Thu, 13 Oct 2016

16:00 - 17:30
L4

The Jacobi Stochastic Volatility Model

Sergio Pulido Nino
(Laboratoire de Mathématiques et Modélisation d'Évry (LaMME))
Abstract

We introduce a novel stochastic volatility model where the squared volatility of the asset return follows a Jacobi process. It contains the Heston model as a limit case. We show that the the joint distribution of any finite sequence of log returns admits a Gram--Charlier A expansion in closed-form. We use this to derive closed-form series representations for option prices whose payoff is a function of the underlying asset price trajectory at finitely many time points. This includes European call, put, and digital options, forward start options, and forward start options on the underlying return. We derive sharp analytical and numerical bounds on the series truncation errors. We illustrate the performance by numerical examples, which show that our approach offers a viable alternative to Fourier transform techniques. This is joint work with Damien Ackerer and Damir Filipovic.

Fri, 02 Dec 2016

13:00 - 14:00
L6

High-order filtered schemes for time-dependent second order HJB equations

Christoph Reisinger
(Mathematical Institute)
Abstract

In this talk, we present and analyse a class of “filtered” numerical schemes for second order Hamilton-Jacobi-Bellman (HJB) equations, with a focus on examples arising from stochastic control problems in financial engineering. We start by discussing more widely the difficulty in constructing compact and accurate approximations. The key obstacle is the requirement in the established convergence analysis of certain monotonicity properties of the schemes. We follow ideas in Oberman and Froese (2010) to introduce a suitable local modification of high order schemes, which are necessarily non-monotone, by “filtering” them with a monotone scheme. Thus, they can be proven to converge and still show an overall high order behaviour for smooth enough value functions. We give theoretical proofs of these claims and illustrate the behaviour with numerical tests. 

This talk is based on joint work with Olivier Bokanowski and Athena Picarelli.

Fri, 18 Nov 2016

13:00 - 14:00
L6

Second Year DPhil Student Talks

Zhenru Wang and Vadim Kaushansky
(Mathematical Institute)
Abstract

Zhenru Wang
Title: Multi-Index Monte Carlo Estimators for a Class of Zakai SPDEs
Abstract:   
We first propose a space-time Multi-Index Monte Carlo (MIMC) estimator for a one-dimensional parabolic SPDE of Zakai type. We compare the computational cost required for a prescribed accuracy with the Multilevel Monte Carlo (MLMC) method of Giles and Reisinger (2012). Then we extend the estimator to a two-dimensional variant of SPDE. The theoretical analysis shows the benefit of using MIMC in high dimensional problems over MLMC methods. Numerical tests confirm these finding empirically.


Vadim Kaushansky
Title: An extended structural default model with jump risk
Abstact:
We consider a structural default model in an interconnected banking network as in Itkin and Lipton (2015), where there are mutual obligations between each pair of banks. We analyse the model numerically for the case of two banks with jumps in their asset value processes. Specifically, we develop a finite difference method for the resulting two-dimensional partial integro-differential equation, and study its stability and consistency. By applying this method, we compute joint and marginal survival probabilities, as well as prices of credit default swaps (CDS) and first-to-default swaps (FTD), Credit and Debt Value Adjustments (CVA and DVA).

 

Fri, 04 Nov 2016

13:00 - 14:00
L6

Optimal Transport in general dimensions with various additional constraints

Tongseok Lim
(Mathematical Institute)
Abstract

We will introduce variants of the optimal transport problem, namely martingale optimal transport problem and subharmonic martingale transport problem. Their motivation is partly from mathematical finance. We will see that in dimension greater than one, the additional constraints imply interesting and deep mathematical subtlety on the attainment of dual problem, and it also affects heavily on the geometry of optimal solutions. If time permits, we will introduce still another variant of the martingale transport problem, called the multi-martingale optimal transport problem.

Subscribe to