Ten things you should know about quadrature
Abstract
Quadrature is the term for the numerical evaluation of integrals. It's a beautiful subject because it's so accessible, yet full of conceptual surprises and challenges. This talk will review ten of these, with plenty of history and numerical demonstrations. Some are old if not well known, some are new, and two are subjects of my current research.
Extensions of modules for graded Hecke algebras
Abstract
Graded affine Hecke algebras were introduced by Lusztig for studying the representation theory of p-adic groups. In particular, some problems about extensions of representations of p-adic groups can be transferred to problems in the graded Hecke algebra setting. The study of extensions gives insight to the structure of various reducible modules. In this talk, I shall discuss some methods of computing Ext-groups for graded Hecke algebras.
The talk is based on arXiv:1410.1495, arXiv:1510.05410 and forthcoming work.
Discrete triangulated categories
Abstract
There And Back Again: A Localization's Tale.
Abstract
The prime spectrum of a quantum algebra has a finite stratification in terms
of a set of distinguished primes called H-primes, and we can study these
strata by passing to certain nice localizations of the algebra. H-primes
are now starting to show up in some surprising new areas, including
combinatorics (totally nonnegative matrices) and physics, and we can borrow
techniques from these areas to answer questions about quantum algebras and
their localizations. In particular, we can use Grassmann necklaces -- a
purely combinatorial construction -- to study the topological structure of
the prime spectrum of quantum matrices.
Strongly dense subgroups of semisimple algebraic groups.
Abstract
A subgroup Gamma of a semisimple algebraic group G is called strongly dense if every subgroup of Gamma is either cyclic or Zariski-dense. I will describe a method for building strongly dense free subgroups inside a given Zariski-dense subgroup Gamma of G, thus providing a refinement of the Tits alternative. The method works for a large class of G's and Gamma's. I will also discuss connections with word maps and expander graphs. This is joint work with Bob Guralnick and Michael Larsen.
A new duality for categories of B-branes
Abstract
Given an Artin stack $X$, there is growing evidence that there should be an associated `category of B-branes', which is some subcategory of the derived category of coherent sheaves on $X$. The simplest case is when $X$ is just a vector space modulo a linear action of a reductive group, or `gauged linear sigma model' in physicists' terminology. In this case we know some examples of what the category B-branes should be. Hori has conjectured a physical duality between certain families of GLSMs, which would imply that their B-brane categories are equivalent. We prove this equivalence of categories. As an application, we construct Homological Projective Duality for (non-commutative resolutions of) Pfaffian varieties.
InFoMM CDT Group Meeting - Introduction to Niall, Rachel & Ozzy's Research (includes complementary lunch)
Abstract
The InFoMM CDT Group Meetings will follow the format of the OCIAM group meetings. We hope they will facilitate good communication between the Academic and Student community so that the research activities remain closely connected, opportunities for additional interaction are easily identified, and cross-fertilisation of ideas can be catalysed.
16:00
Normal spanning trees in uncountable graphs
Abstract
"In a paper from 2001, Diestel and Leader characterised uncountable graphs with normal spanning trees through a class of forbidden minors. In this talk we investigate under which circumstances this class of forbidden minors can be made nice. In particular, we will see that there is a nice solution to this problem under Martin’s Axiom. Also, some connections to the Stone-Chech remainder of the integers, and almost disjoint families are uncovered.”