Expansion, Random Walks and Sieving in SL_2(F_p[t])
Abstract
Expansion, Random Walks and Sieving in $SL_2 (\mathbb{F}_p[t])$
We pose the question of how to characterize "generic" elements of finitely generated groups. We set the scene by discussing recent results for linear groups in characteristic zero. To conclude we describe some new work in positive characteristic.
11:00
'Model-completeness for Henselian valued fields with finite ramification'
Abstract
This is joint work with Angus Macintyre. We prove a general model-completeness theorem for Henselian valued fields
stating that a Henselian valued field of characteristic zero with value group a Z-group and with finite ramification is model-complete in the language of rings provided that its residue field is model-complete. We apply this to extensions of p-adic fields showing that any finite or infinite extension of p-adics with finite ramification is model-complete in the language of rings.
Wooley's approach to the Vinogradov Mean Value Theorem
Abstract
The talk will discuss the mean value theorem and Wooley's breakthrough with his "efficent congruencing" method.
Cubic hypersurfaces over global fields
Abstract
Let $X$ be a smooth cubic hypersurface of dimension $m$ defined over a global field $K$. A conjecture of Colliot-Thelene(02) states that $X$ satisfies the Hasse Principle and Weak approximation as long as $m\geq 3$. We use a global version of Hardy-Littlewood circle method along with the theory of global $L$-functions to establish this for $m\geq 6$, in the case $K=\mathbb{F}_q(t)$, where $\text{char}(\mathbb{F}_{q})> 3$.
Multiplicative quiver varieties and their quantizations
Abstract
Quiver varieties and their quantizations feature prominently in
geometric representation theory. Multiplicative quiver varieties are
group-like versions of ordinary quiver varieties whose quantizations
involve quantum groups and $q$-difference operators. In this talk, we will
define and give examples of representations of quivers, ordinary quiver
varieties, and multiplicative quiver varieties. No previous knowledge of
quivers will be assumed. If time permits, we will describe some phenomena
that occur when quantizing multiplicative quiver varieties at a root of
unity, and work-in-progress with Nicholas Cooney.
Lipschitz Regularity for Inner Variational PDEs in 2D
Abstract
I will present a joint work with Leonid Kovalev and Jani Onninen. The proofs are based on topological arguments (degree theory) and the properties of planar quasiconformal mappings. These new ideas apply well to inner variational equations of conformally invariant energy integrals; in particular, to the Hopf-Laplace equation for the Dirichlet integral.
14:15
Groupoids, meromorphic connections and divergent series
Abstract
A meromorphic connection on a complex curve can be interpreted as a representation of a simple Lie algebroid. By integrating this Lie algebroid to a Lie groupoid, one obtains a complex surface on which the parallel transport of the connection is globally well-defined and holomorphic, despite the apparent singularities of the corresponding differential equations. I will describe these groupoids and explain how they can be used to illuminate various aspects of the classical theory of singular ODEs, such as the resummation of divergent series solutions. (This talk is based on joint work with Marco Gualtieri and Songhao Li.)
16:00
Period 1 implies chaos … sometimes
Abstract
Abstract: Joint work with Syahida Che Dzul-Kifli
Let $f:X\to X$ be a continuous function on a compact metric space forming a discrete dynamical system. There are many definitions that try to capture what it means for the function $f$ to be chaotic. Devaney’s definition, perhaps the most frequently cited, asks for the function $f$ to be topologically transitive, have a dense set of periodic points and is sensitive to initial conditions. Bank’s et al show that sensitive dependence follows from the other two conditions and Velleman and Berglund show that a transitive interval map has a dense set of periodic points. Li and Yorke (who coined the term chaos) show that for interval maps, period three implies chaos, i.e. that the existence of a period three point (indeed of any point with period having an odd factor) is chaotic in the sense that it has an uncountable scrambled set.
The existence of a period three point is In this talk we examine the relationship between transitivity and dense periodic points and look for simple conditions that imply chaos in interval maps. Our results are entirely elementary, calling on little more than the intermediate value theorem.
16:00
The Gömböc, the Turtle and the Evolution of Shape
Abstract
In 1995, celebrated Russian mathematician V.I. Arnold conjectured that, contrary to common belief, convex, homogeneous solids with just two static balance points ("weebles without a bottom weight") may exist. Ten years later, based on a constructive proof, the first such object, dubbed "Gömböc", was built. In the process leading to the discovery, several curious properties of the shape emerged and evidently some tropical turtles had evolved similar shells for the purpose of self-righting.
This Public Lecture will describe those properties as well as explain the journey of discovery, the mathematics behind the journey, the parallels with molecular biology and the latest Gömböc thinking, most notably Arnold's second major conjecture, namely that the Gömböc in Nature is not the origin, rather the ultimate goal of shape evolution.
Please email @email to register.