15:30
Zariski closures of linear reflection groups
Abstract
We show that linear reflection groups in the sense of Vinberg are often Zariski dense in PGL(n). Among the applications are examples of low-dimensional closed hyperbolic manifolds whose fundamental groups virtually embed as Zariski-dense subgroups of SL(n,Z), as well as some one-ended Zariski-dense subgroups of SL(n,Z) that are finitely generated but infinitely presented, for all sufficiently large n. This is joint work with Jacques Audibert, Gye-Seon Lee, and Ludovic Marquis.
15:30
Unstable cohomology of SL(n,Z) and Hopf algebras
Abstract
I want to give a survey about the rational cohomology of SL_n
Z. This includes recent developments of finding Hopf algebras in the
direct sum of all cohomology groups of SL_n Z for all n. I will give a
quick overview about Hopf algebras and what this structure implies for
the cohomology of SL_n Z.
15:30
Two-generator subgroups of free-by-cyclic groups
Abstract
In general, the classification of finitely generated subgroups of a given group is intractable. Restricting to two-generator subgroups in a geometric setting is an exception. For example, a two-generator subgroup of a right-angled Artin group is either free or free abelian. Jaco and Shalen proved that a two-generator subgroup of the fundamental group of an orientable atoroidal irreducible 3-manifold is either free, free-abelian, or finite-index. In this talk I will present recent work proving a similar classification theorem for two generator mapping-torus groups of free group endomorphisms: every two generator subgroup is either free or conjugate to a sub-mapping-torus group. As an application we obtain an analog of the Jaco-Shalen result for free-by-cyclic groups with fully irreducible atoroidal monodromy. While the statement is algebraic, the proof technique uses the topology of finite graphs, a la Stallings. This is joint work with Naomi Andrew, Ilya Kapovich, and Stefano Vidussi.
15:30
Poincaré duality fibrations and Kontsevich's Lie graph complex
Abstract
I will talk about certain higher algebraic structure, governed by Kontsevich's Lie graph complex, that can be associated to an oriented fibration with Poincaré duality fiber. We construct a generalized fiber integration map associated to each Lie graph homology class and the main result is that this gives a faithful representation of graph homology. I will discuss how this leads to new possible interpretations of Lie graph homology classes as obstructions to, on one hand, smoothness of Poincaré duality fibrations, and, on the other hand, the existence of Poincaré duality algebra resolutions of the cochains of the total space as a dg module over the cochains of the base space.