Tue, 28 May 2024

14:00 - 15:00
L4

Percolation through isoperimetry

Michael Krivelevich
(Tel Aviv University)
Abstract

Let $G$ be a $d$-regular graph of growing degree on $n$ vertices. Form a random subgraph $G_p$ of $G$ by retaining edge of $G$ independently with probability $p=p(d)$. Which conditions on $G$ suffice to observe a phase transition at $p=1/d$, similar to that in the binomial random graph $G(n,p)$, or, say, in a random subgraph of the binary hypercube $Q^d$?

We argue that in the supercritical regime $p=(1+\epsilon)/d$, $\epsilon>0$ a small constant, postulating that every vertex subset $S$ of $G$ of at most $n/2$ vertices has its edge boundary at least $C|S|$, for some large enough constant $C=C(\epsilon)>0$, suffices to guarantee likely appearance of the giant component in $G_p$. Moreover, its asymptotic order is equal to that in the random graph $G(n,(1+\epsilon)/n)$, and all other components are typically much smaller.

We also give examples demonstrating tightness of our main result in several key senses.

A joint work with Sahar Diskin, Joshua Erde and Mihyun Kang.

Tue, 14 May 2024

14:00 - 15:00
L4

The Erdös–Rényi random graph conditioned on being a cluster graph

Marc Noy
(Universitat Politecnica de Catalunya)
Abstract

A cluster graph is a disjoint union of complete graphs. We consider the random $G(n,p)$ graph on $n$ vertices with connection probability $p$, conditioned on the rare event of being a cluster graph. There are three main motivations for our study.

  1. For $p = 1/2$, each random cluster graph occurs with the same probability, resulting in the uniform distribution over set partitions. Interpreting such a partition as a graph adds additional structural information.
  2. To study how the law of a well-studied object like $G(n,p)$ changes when conditioned on a rare event; an evidence of this fact is that the conditioned random graph overcomes a phase transition at $p=1/2$ (not present in the dense $G(n,p)$ model).
  3. The original motivation was an application to community detection. Taking a random cluster graph as a model for a prior distribution of a partition into communities leads to significantly better community-detection performance.

This is joint work with Martijn Gösgens, Lukas Lüchtrath, Elena Magnanini and Élie de Panafieu.

Tue, 30 Apr 2024

14:00 - 15:00
L4

The rainbow saturation number

Natalie Behague
(University of Warwick)
Abstract

The saturation number of a graph is a famous and well-studied counterpoint to the Turán number, and the rainbow saturation number is a generalisation of the saturation number to the setting of coloured graphs. Specifically, for a given graph $F$, an edge-coloured graph is $F$-rainbow saturated if it does not contain a rainbow copy of $F$, but the addition of any non-edge in any colour creates a rainbow copy of $F$. The rainbow saturation number of $F$ is the minimum number of edges in an $F$-rainbow saturated graph on $n$ vertices. Girão, Lewis, and Popielarz conjectured that, like the saturation number, for all $F$ the rainbow saturation number is linear in $n$. I will present our attractive and elementary proof of this conjecture, and finish with a discussion of related results and open questions.

A database of basic numerical invariants of Hilbert modular surfaces
Assaf, E Babei, A Breen, B Costa, E Duque-Rosero, J Horawa, A Kieffer, J Kulkarni, A Molnar, G Schiavone, S Voight, J Contemporary Mathematics volume 796 243-259 (08 Feb 2024)
Tue, 28 May 2024
13:00
L2

Disordered quantum critical fixed points from holography

Andrew Lucas
(Boulder )
Abstract

In this talk I will describe the systematic construction of strongly interacting RG fixed points with a finite disorder strength.  Such random-field disorder is quite common in condensed matter experiment, necessitating an understanding of the effects of this disorder on the properties of such fixed points. In the past, such disordered fixed points were accessed using e.g. epsilon expansions in perturbative quantum field theory, using the replica method to treat disorder.  I will show that holography gives an alternative picture for RG flows towards disordered fixed points.  In holography, spatially inhomogeneous disorder corresponds to inhomogeneous boundary conditions for an asymptotically-AdS spacetime, and the RG flow of the disorder strength is captured by the solution to the Einstein-matter equations. Using this construction, we have found analytically-controlled RG fixed points with a finite disorder strength.  Our construction accounts for, and explains, subtle non-perturbative geometric effects that had previously been missed.  Our predictions are consistent with conformal perturbation theory when studying disordered holographic CFTs, but the method generalizes and gives new models of disordered metallic quantum criticality.

Utility indifference pricing with market incompleteness
Monoyios, M Nonlinear Models in Mathematical Finance: New Research Trends in Option Pricing 67-100 (01 Apr 2008)
Mon, 29 Apr 2024
16:00
L2

New Lower Bounds For Cap Sets

Fred Tyrrell
(University of Bristol)
Abstract

A cap set is a subset of $\mathbb{F}_3^n$ with no solutions to $x + y + z = 0$ other than when $x = y = z$, or equivalently no non-trivial $3$-term arithmetic progressions. The cap set problem asks how large a cap set can be, and is an important problem in additive combinatorics and combinatorial number theory. In this talk, I will introduce the problem, give some background and motivation, and describe how I was able to provide the first progress in 20 years on the lower bound for the size of a maximal cap set. Building on a construction of Edel, we use improved computational methods and new theoretical ideas to show that, for large enough $n$, there is always a cap set in $\mathbb{F}_3^n$ of size at least $2.218^n$. I will then also discuss recent developments, including an extension of this result by Google DeepMind.

Tue, 23 Apr 2024

14:00 - 15:00
L4

A (quasi)-polynomial Bogolyubov theorem for finite simple groups

Noam Lifshitz
(Hebrew University of Jerusalem)
Abstract

We show that there exists $C>1$, such that if $A$ is a subset of a non-alternating finite simple group $G$ of density $|A|/|G|= \alpha$, then $AA^{-1}AA^{-1}$ contains a subgroup of density at least $\alpha^{C}$. We will also give a corresponding (slightly weaker) statement for alternating groups.

To prove our results we introduce new hypercontractive inequalities for simple groups. These allow us to show that the (non-abelian) Fourier spectrum of indicators of 'global' sets are concentrated on the high-dimensional irreducible representations. Here globalness is a pseudorandomness notion reminiscent of the notion of spreadness.

The talk is based on joint works with David Ellis, Shai Evra, Guy Kindler, Nathan Lindzey, and Peter Keevash, and Dor Minzer. No prior knowledge of representation theory will be assumed.

Tue, 04 Jun 2024

14:00 - 15:00
L5

Geometrisation of the Langlands correspondence

James Newton
(University of Oxford)
Abstract

I'll give an introduction to a recent theme in the Langlands program over number fields and mixed characteristic local fields (with a much older history over function fields). This is enhancing the traditional 'set-theoretic' Langlands correspondence into something with a more geometric flavour. For example, relating (categories of) representations of p-adic groups to sheaves on moduli spaces of Galois representations. No number theory or 'Langlands' background will be assumed!

Subscribe to