16:00
Coarse cohomology of metric spaces and quasimorphisms
Abstract
In this talk, we give an accessible introduction to the theory of coarse cohomology of metric spaces in the sense of Margolis, which we present in direct analogy with group cohomology for discrete groups. We explain how this yields the robust notion of coarse cohomological dimension (due to Margolis), which is a genuine quasi-isometry invariant of metric spaces generalising the cohomological dimension of groups when the latter is finite. We then give applications to geometric properties of quasimorphisms and motivate how such considerations might be useful in the setting of non-positively curved groups. This is joint reading/work with Paula Heim.
16:00
Property (T) via Sum of Squares
Abstract
Property (T) is a rigidity property for group representations. It is generally very difficult to determine whether an infinite group has property (T) or not. It has long been known that a discrete group with a finite symmetric generating set has property (T) if and only if the group Laplacian is a positive element in the maximal group C*-algebra. However, this characterization has not been useful in addressing the question for automorphism groups of (non-abelian) free groups. In his 2016 paper, Ozawa proved that the phenomenon of 'positivity' of the group Laplacian is observed in the real group algebra, meaning that the Laplacian can be decomposed into a 'sum of squares'. This result transformed checking property (T) into a finite-dimensional condition that can be performed with the assistance of computers. In this talk, we will introduce property (T) and discuss Ozawa's result in detail.