15:30
A statistical approach for simulating the density solution of a McKean-Vlasov equation
Abstract
We prove convergence results of the simulation of the density solution to the McKean-Vlasov equation, when the measure variable is in the drift. Our method builds upon adaptive nonparametric results in statistics that enable us to obtain a data-driven selection of the smoothing parameter in a kernel-type estimator. In particular, we give a generalised Bernstein inequality for Euler schemes with interacting particles and obtain sharp deviation inequalities for the estimated classical solution. We complete our theoretical results with a systematic numerical study and gather empirical evidence of the benefit of using high-order kernels and data-driven smoothing parameters. This is a joint work with M. Hoffmann.