16:00
(Seminar cancelled) Generalized Tate-Shafarevich groups over function fields
Abstract
Given a smooth geometrically connected curve C over a perfect field k and a smooth commutative group scheme G defined over the function field K of C, one can consider isomorphism classes of G-torsors locally trivial at completions of K coming from closed points of C. They form a generalized Tate-Shafarevich group which specializes to the classical one in the case when k is finite. Recently, these groups have been studied over other base fields k as well, for instance p-adic or number fields. Surprisingly, finiteness can be proven in some cases but there are also quite a few open questions which I plan to discuss in my talk.