Exploring Causal Entropic Forces in optimisation: From the scale of a neural network to that of social groups subject to ethical implications
Optimal cleaning plan schedules for the sanitising of mass production lines in the food and drinks industry
Oxford Mathematics Public Lectures
Scaling the Maths of Life - Michael Bonsall
In this talk Michael Bonsall will explore how we can use mathematics to link between scales of organisation in biology. He will delve in to developmental biology, ecology and neurosciences, all illustrated and explored with real life examples, simple games and, of course, some neat maths.
Michael Bonsall is Professor of Mathematical Biology in Oxford.
Forecast based business resource development in the presence of uncertainty
3-D axisymmetric subsonic flows with nonzero swirl for the compressible Euler-Poisson system
Abstract
I will present a recent result on the structural stability of 3-D axisymmetric subsonic flows with nonzero swirl for the steady compressible Euler–Poisson system in a cylinder supplemented with non-small boundary data. A special Helmholtz decomposition of the velocity field is introduced for 3-D axisymmetric flow with a nonzero swirl (=angular momentum density) component. This talk is based on a joint work with S. Weng (Wuhan University, China).
Particles in Fluid Flows: How Microscopic Processes Impact Macroscopic Evolution
Abstract
Through laboratory experiments, we examine the transport, settling and resuspension of sediments as well as the influence of floating particles upon damping wave motion. Salt water is shown to enhance flocculation of clay and hence increase their settling rate. In studies modelling sediment-bearing (hypopycnal) river plumes, experiments show that the particles that eventually settle through uniform-density fluid toward a sloping bottom form a turbidity current. Meanwhile, even though the removal of particles should increase the buoyancy and hence speed of the surface current, in reality the surface current stops. This reveals that the removal of fresh water carried by the viscous boundary layers surrounding the settling particles drains the current even when their concentration by volume is less than 5%. The microscopic effect of boundary layer transport by particles upon the large scale evolution is dramatically evident in the circumstance of a mesopycnal particle-bearing current that advances along the interface of a two-layer fluid. As the fresh water rises and particles fall, the current itself stops and reverses direction. As a final example, the periodic separation and consolidation of particles floating on a surface perturbed by surface waves is shown to damp faster than exponentially to attain a finite-time arrest as a result of efficiently damped flows through interstitial spaces between particles - a phenomenon that may be important for understanding the damping of surface waves by sea ice in the Arctic Ocean (and which is well-known to anyone drinking a pint with a proper head or a margarita with rocks or slush).