Fri, 10 Nov 2017
16:00
L2

QBIOX Colloquium

Professor Paul Riley, Professor Eleanor Stride
Abstract

The fourth QBIOX Colloquium will take place in the Mathematical Institute on Friday 10th November (5th week) and feature talks from Professor Paul Riley (Department of Pathology, Anatomy and Genetics / BHF Oxbridge Centre for Regenerative Medicine, https://www.dpag.ox.ac.uk/research/riley-group) and Professor Eleanor Stride (Institute of Biomedical Engineering, http://www.ibme.ox.ac.uk/research/non-invasive-therapy-drug-delivery/pe…).

1600-1645 - Paul Riley, "Enroute to mending broken hearts".
1645-1730 - Eleanor Stride, "Reducing tissue hypoxia for cancer therapy".
1730-1800 - Networking and refreshments.

We very much hope to see you there. As ever, tickets are not necessary, but registering to attend will help us with numbers for catering.
Please see the following link for further details and a link to register.
https://www.eventbrite.co.uk/e/qbiox-colloquium-michelmas-term-2017-tic…

Abstracts
Paul Riley - "En route to mending broken hearts".
We adopt the paradigm of understanding how the heart develops during pregnancy as a first principal to inform on adult heart repair and regeneration. Our target for cell-based repair is the epicardium and epicardium-derived cells (EPDCs) which line the outside of the forming heart and contribute vascular endothelial and smooth muscle cells to the coronary vasculature, interstitial fibroblasts and cardiomyocytes. The epicardium can also act as a source of signals to condition the growth of the underlying embryonic heart muscle. In the adult heart, whilst the epicardium is retained, it is effectively quiescent. We have sought to extrapolate the developmental potential of the epicardium to the adult heart following injury by stimulating dormant epicardial cells to give rise to new muscle and vasculature. In parallel, we seek to modulate the local environment into which the new cells emerge: a cytotoxic mixture of inflammation and fibrosis which prevents cell engraftment and integration with survived heart tissue. To this end we manipulate the lymphatic vessels in the heart given that, elsewhere in the body, the lymphatics survey the immune system and modulate inflammation at peripheral injury sites. We recently described the development of the cardiac lymphatic vasculature and revealed in the adult heart that they undergo increased vessel sprouting (lymphangiogenesis) in response to injury, to improve function, remodelling and fibrosis. We are currently investigating whether increased lymphangiogenesis functions to clear immune cells and constrain the reparative response for optimal healing. 

Eleanor Stride - "Reducing tissue hypoxia for cancer therapy"
Hypoxia, i.e. a reduction in dissolved oxygen concentration below physiologically normal levels, has been identified as playing a critical role in the progression of many types of disease and as a key determinant of the success of cancer treatment. It poses a particular challenge for treatments such as radiotherapy, photodynamic and sonodynamic therapy which rely on the production of reactive oxygen species. Strategies for treating hypoxia have included the development of hypoxia-selective drugs as well as methods for directly increasing blood oxygenation, e.g. hyperbaric oxygen therapy, pure oxygen or carbogen breathing, ozone therapy, hydrogen peroxide injections and administration of suspensions of oxygen carrier liquids. To date, however, these approaches have delivered limited success either due to lack of proven efficacy and/or unwanted side effects. Gas microbubbles, stabilised by a biocompatible shell have been used as ultrasound contrast agents for several decades and have also been widely investigated as a means of promoting drug delivery. This talk will present our recent research on the use of micro and nanobubbles to deliver both drug molecules and oxygen simultaneously to a tumour to facilitate treatment.

Tue, 05 Dec 2017

12:00 - 13:15
L3

Azurite: A new algorithm for finding bases of loop integrals

Kasper Larsen
(Southampton University)
Abstract

Scattering amplitudes computed at a fixed loop order, along with any other object computed in perturbative QFT, can be expressed as a linear combination of a finite basis of loop integrals. To compute loop amplitudes in practise, such a basis of integrals must be determined. In this talk I introduce a new algorithm for finding bases of loop integrals and discuss its implementation in the publically available package Azurite.

Tue, 28 Nov 2017

12:00 - 13:15
L4

Amplitude relations in Einstein-Yang-Mills theory

Dhritiman Nandan
(Edinburgh University)
Abstract

I will discuss recent developments in the study of scattering amplitudes in Einstein-Yang-Mills theory. At tree level we find new structures at higher order collinear limits and novel connections with amplitudes in Yang-Mills theory using the CHY formalism. Finally I will comment on unitarity based observations regarding one-loop amplitudes in the theory. 

Tue, 14 Nov 2017

12:00 - 13:15
L4

Space-time conformal field theories from the Riemann sphere

Tim Adamo
(Imperial College)
Abstract

We consider two-dimensional chiral, first-order conformal field theories governing maps from the Riemann sphere to the projective light cone inside Minkowski space -- the natural setting for describing conformal field theories in two fewer dimensions. These theories have a SL(2) algebra of local bosonic constraints which can be supplemented by additional fermionic constraints depending on the matter content of the theory. By computing the BRST charge associated with gauge fixing these constraints, we find anomalies which vanish for specific target space dimensions. These critical dimensions coincide precisely with those for which (biadjoint) cubic scalar theory, gauge theory and gravity are classically conformally invariant. Furthermore, the BRST cohomology of each theory contains vertex operators for the full conformal multiplets of single field insertions in each of these space-time CFTs. We give a prescription for the computation of three-point functions, and compare our formalism with the scattering equations approach to on-shell amplitudes.

Wed, 01 Nov 2017

11:00 - 12:30
N3.12

Line Arrangements on the Projective Plane

Sebastian Eterovic
Abstract

Classifying line arrangements on the plane is a problem that has been around for a long time. There has been a lot of work from the perspective of incidence geometry, but after a paper of Hirzebruch in in 80's, it has also attracted the attention of algebraic geometers for the applications that it has on classifying complex algebraic surfaces of general type. In this talk I will present various results around this problem, I will show some specific questions that are still open, and I will explain how it relates to complex surfaces of general type. 
 

Mon, 27 Nov 2017
12:45
L3

D-brane masses and the motivic Hodge conjecture

Albrecht Klemm
(Bonn)
Abstract

We consider the one parameter mirror families W of the Calabi-Yau 3-folds with Picard-Fuchs  equations of hypergeometric type. By mirror symmetry the  even D-brane masses of orginial Calabi-Yau manifolds M can be identified with four periods with respect to an integral symplectic basis of $H_3(W,\mathbb{Z})$ at the point of maximal unipotent monodromy. We establish that the masses of the D4 and D2 branes at the conifold are given by the two algebraically independent values of the L-function of the weight four holomorphic Hecke eigenform with eigenvalue one of $\Gamma_0(N)$. For the quintic in  $\mathbb{P}^4$ it this Hecke eigenform of $\Gamma_0(25)$ was as found by Chad Schoen.  It was discovered  by de la Ossa, Candelas and Villegas that  its  coefficients $a_p$ count the number of  solutions of  the mirror quinitic at the conifold over the finite number field $\mathbb{F}_p$ . Using the theory of periods and quasi-periods of $\Gamma_0(N)$ and the special geometry pairing on Calabi-Yau 3 folds we can fix further values in the connection matrix between the maximal unipotent monodromy point and the conifold point.  

 
 
 
 
Mon, 06 Nov 2017
12:45
L3

On the Vafa-Witten theory on closed four-manifolds

Yuuji Tanaka
(Oxford)
Abstract

We discuss mathematical studies on the Vafa-Witten theory, one of topological twists of N=4 super Yang-Mills theory in four dimensions, from the viewpoints of both differential and algebraic geometry. After mentioning backgrounds and motivation, we describe some issues to construct mathematical theory of this Vafa-Witten one, and explain possible ways to sort them out by analytic and algebro-geometric methods, the latter is joint work with Richard Thomas.

 
On the reducibility of induced representations for classical p-adic groups and related affine Hecke algebras
Ciubotaru, D Heiermann, V Israel Journal of Mathematics volume 231 issue 1 379-417 (07 May 2019)
Subscribe to