In recognition of a lifetime's contribution across the mathematical sciences, we are initiating a series of annual Public Lectures in honour of Roger Penrose. The first lecture will be given by his long-time collaborator and friend Stephen Hawking on 27th October @5pm.
You will find the live podcast here (and also via the University of Oxford Facebook page).
********* Algebraic Geometry Seminar ********* Title: An asymptotic Nullstellensatz for curves
Abstract
Hilbert's Nullstellensatz asserts the existence of a complex point satisfying lying on a given variety, provided there is no (ideal-theoretic) proof to the contrary.
I will describe an analogue for curves (of unbounded degree), with respect to conditions specifying that they lie on a given smooth variety, and have homology class
near a specified ray. In particular, an analogue of the Lefschetz principle (relating large positive characteristic to characteristic zero) becomes available for such questions.
The proof is very close to a theorem of Boucksom-Demailly-Pau-Peternell on moveable curves, but requires a certain sharpening. This is part of a joint project with Itai Ben Yaacov, investigating the logic of the product formula; the algebro-geometric statement is needed for proving the existential closure of $\Cc(t)^{alg}$ in this language.
12:45
Generalized Seiberg-Witten equations and almost-Hermitian geometry
Abstract
I will talk about a generalisation of the Seiberg-Witten equations introduced by Taubes and Pidstrygach, in dimension 3 and 4 respectively, where the spinor representation is replaced by a hyperKahler manifold admitting certain symmetries. I will discuss the 4-dimensional equations and their relation with the almost-Kahler geometry of the underlying 4-manifold. In particular, I will show that the equations can be interpreted in terms of a PDE for an almost-complex structure on 4-manifold. This generalises a result of Donaldson.
An asymptotic Nullstellensatz for curves
Abstract
Hilbert's Nullstellensatz asserts the existence of a complex point satisfying lying on a given variety, provided there is no (ideal-theoretic) proof to the contrary.
I will describe an analogue for curves (of unbounded degree), with respect to conditions specifying that they lie on a given smooth variety, and have homology class
near a specified ray. In particular, an analogue of the Lefschetz principle (relating large positive characteristic to characteristic zero) becomes available for such questions.
The proof is very close to a theorem of Boucksom-Demailly-Pau-Peternell on moveable curves, but requires a certain sharpening. This is part of a joint project with Itai Ben Yaacov, investigating the logic of the product formula; the algebro-geometric statement is needed for proving the existential closure of $\Cc(t)^{alg}$ in this language.