Fri, 28 Oct 2016

11:45 - 12:45
L4

InFoMM CDT Group Meeting

Niall Bootland and Sourav Mondal
(Mathematical Institute)
Abstract

Niall Bootland (Scalable Two-Phase Flow Solvers)

 

Sourav Mondal (Electrohydrodynamics in microchannel)

Abstract: Flow of liquid due to an electric potential gradient is possible when the channel walls bear a surface charge and liquid contains free charges (electrolyte). Inclusion of electrokinetic effects in microchannel flows has an added advantage over Poiseuille flow - depending upon the electrolyte concentration, the Debye layer thickness is different, which allows for tuning of flow profiles and the associated mass transport. The developed mathematical model helps in probing the mass transfer effects through a porous walled microchannel induced by electrokinetic forces.

What can fashionable ideas, blind faith, or pure fantasy have to do with the scientific quest to understand the universe? Surely, scientists are immune to trends, dogmatic beliefs, or flights of fancy? In fact, Roger Penrose argues that researchers working at the extreme frontiers of mathematics and physics are just as susceptible to these forces as anyone else.

Tue, 15 Nov 2016
14:30
L6

Forbidden vector-valued intersection

Eoin Long
(Oxford University)
Abstract

Given vectors $V = (v_i: i \in [n]) \in R^D$, we define the $V$-intersection of $A,B \subset [n]$ to be the vector $\sum_{i \in A \cap B} v_i$. In this talk, I will discuss a new, essentially optimal, supersaturation theorem for $V$-intersections, which can be roughly stated as saying that any large family of sets contains many pairs $(A,B)$ with $V$-intersection $w$, for a wide range of $V$ and $w$. A famous theorem of Frankl and Rödl corresponds to the case $D=1$ and all $v_i=1$ of our theorem. The case $D=2$ and $v_i=(1,i)$ solves a conjecture of Kalai.

Joint work with Peter Keevash.

Tue, 08 Nov 2016
14:30
L6

Turán Numbers via Local Stability Method

Liana Yepremyan
(Oxford University)
Abstract

The Turán number of an $r$-graph $G$, denoted by $ex(n,G)$, is the maximum number of edges in an $G$-free $r$-graph on $n$ vertices. The Turán density  of an $r$-graph $G$, denoted by $\pi(G)$, is the limit as $n$ tends to infinity of the maximum edge density of an $G$-free $r$-graph on $n$ vertices.

During this talk I will discuss a method, which we call  local stability method, that allows one to obtain exact Turán numbers from Turán density results. This method can be thought of as an extension of the classical stability method by  generically utilising the Lagrangian function. Using it, we obtained new hypergraph Turán numbers. In particular, we did so for a hypergraph called generalized triangle, for uniformities 5 and 6, which solved a conjecture of Frankl and Füredi from 1980's.

This is joint work with Sergey Norin.

Subscribe to