Relation of the van est spectral sequence to K-theory and cyclic homology
Tillmann, U Illinois Journal of Mathematics volume 37 issue 4 589-608 (01 Jan 1993)
Fri, 06 Jun 2025
16:00
C3

Sharp mixed moment bounds for zeta times a Dirichlet L-function

Markus Valås Hagen
(NTNU)
Abstract

A famous theorem of Selberg asserts that $\log|\zeta(\tfrac12+it)|$ is approximately a normal distribution with mean $0$ and variance $\tfrac12\log\log T$, when we sample $t\in [T,2T]$ uniformly. This extends in a natural way to a plethora of other $L$-functions, one of them being Dirichlet $L$-functions $L(s,\chi)$ with $\chi$ a primitive Dirichlet character. Viewing $\zeta(\tfrac12+it)$ and $L(\tfrac12+it,\chi)$ as normal variables, we expect indepedence between them, meaning that for fixed $V_1,V_2 \in \mathbb{R}$: $$\textrm{meas}_{t \in [T,2T]} \left\{\frac{\log|\zeta(\tfrac12+it)|}{\sqrt{\tfrac12 \log\log T}}\geq V_1 \text{   and   } \frac{\log|L(\tfrac12+it,\chi)|}{\sqrt{\tfrac12 \log\log T}}\geq V_2\right\} \sim \prod_{j=1}^2 \int_{V_j}^\infty e^{-x^2/2} \frac{\textrm{d}x}{\sqrt{2\pi}}.$$
    When $V_j\asymp \sqrt{\log\log T}$, i.e. we are considering values of order of the variance, the asymptotic above breaks down, but the Gaussian behaviour is still believed to hold to order. For such $V_j$ the behaviour of the joint distribution is decided by the moments $$I_{k,\ell}(T)=\int_T^{2T} |\zeta(\tfrac12+it)|^{2k}|L(\tfrac12+it,\chi)|^{2\ell}\, dt.$$ We establish that $I_{k,\ell}(T)\asymp T(\log T)^{k^2+\ell^2}$ for $0<k,\ell \leq 1$. The lower bound holds for all $k,\ell >0$. This allows us to decide the order of the joint distribution when $V_j =\alpha_j\sqrt{\log\log T}$ for $\alpha_j \in (0,\sqrt{2}]$. Other corollaries include sharp moment bounds for Dedekind zeta functions of quadratic number fields, and Hurwitz zeta functions with rational parameter. 
    

Fri, 30 May 2025
13:00
L5

A unified theory of topological and classical integral transforms

Vadim Lebovici

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

Alesker's theory of generalized valuations unifies smooth measures and constructible functions on real analytic manifolds, extending classical operations on measures. Therefore, operations on generalized valuations can be used to define integral transforms that unify both classical Radon transforms and their topological analogues based on the Euler characteristic, which have been successfully used in shape analysis. However, this unification is proven under rather restrictive assumptions in Alesker's original paper, leaving key aspects conjectural. In this talk, I will present a recent result obtained with A. Bernig that significantly closes this gap by proving that the two approaches indeed coincide on constructible functions under mild transversality assumptions. Our proof relies on a comparison between these operations and operations on characteristic cycles.

Frobenius maps of abelian varieties and finding roots of unity in finite fields
Pila, J Mathematics of Computation volume 55 issue 192 745-763 (01 Jan 1990)
Density of Integer Points on Plane Algebraic Curves
Pila, J International Mathematics Research Notices issue 18 902-912 (01 Dec 1996)
Concordant sequences and integral-valued entire functions
Pila, J Villegas, F Acta Arithmetica volume 88 issue 3 239-268 (01 Jan 1999)
The number of integral points on arcs and ovals
Bombieri, E Pila, J Duke Mathematical Journal volume 59 issue 2 337-357 (01 Jan 1989)
Geometric postulation of a smooth function and the number of rational points
Pila, J Duke Mathematical Journal volume 63 issue 2 449-463 (01 Jan 1991)
Geometric and arithmetic postulation of the exponential function
Pila, J Journal of the Australian Mathematical Society volume 54 issue 1 111-127 (01 Jan 1993)
Homogeneous trees are bilipschitz equivalent
Papasoglu, P Geometriae Dedicata volume 54 issue 3 301-306 (01 Mar 1995)
Subscribe to