Fri, 13 May 2016

16:00 - 17:00
L1

Speaking and listening

Professor Philip Maini
(Mathematical Institute, Oxford)
Abstract

What is the point of giving a talk?  What is the point of going to a talk?  In this presentation, which is intended to have a lot of audience participation, I would like to explore how one should prepare talks for different audiences and different occasions, and what one should try to get out of going to a talk.

If effectively harnessed, increased uptake of renewable generation, and the electrification of heating and transport, will form the bedrock of a low carbon future. Unfortunately, these technologies may have undesirable consequences for the electricity networks supplying our homes and businesses. The possible plethora of low carbon technologies, like electric vehicles, heat pumps and photovoltaics, will lead to increased pressure on the local electricity networks from larger and less predictable demands.

Fri, 22 Apr 2016

16:00 - 17:00
L1

Journals and metrics

Professor Sir John Ball
(Mathematical Institute, Oxford)
Abstract

What is the purpose of journals?  How should you choose what journal to submit a paper to?  Should it be open access?  And how would you like your work to be evaluated?

Fri, 20 May 2016

16:00 - 17:00
L1

North meets South Colloquium

Sira Gratz + Hao Ni
(Mathematical Institute, Oxford)
Abstract

Cluster algebras: from finite to infinite -- Sira Gratz

No image

Abstract: Cluster algebras were introduced by Fomin and Zelevinsky at the beginning of this millennium.  Despite their relatively young age, strong connections to various fields of mathematics - pure and applied - have been established; they show up in topics as diverse as the representation theory of algebras, Teichmüller theory, Poisson geometry, string theory, and partial differential equations describing shallow water waves.  In this talk, following a short introduction to cluster algebras, we will explore their generalisation to infinite rank.

Modelling the effects of data streams using rough paths theory -- Hao Ni

Abstract: In this talk, we bring the theory of rough paths to the study of non-parametric statistics on streamed data and particularly to the problem of regression where the input variable is a stream of information, and the dependent response is also (potentially) a path or a stream.  We explain how a certain graded feature set of a stream, known in the rough path literature as the signature of the path, has a universality that allows one to characterise the functional relationship summarising the conditional distribution of the dependent response. At the same time this feature set allows explicit computational approaches through linear regression.  We give several examples to show how this low dimensional statistic can be effective to predict the effects of a data stream.

Fri, 06 May 2016

16:00 - 17:00
L1

North meets South Colloquium

Bruce Bartlett + Giacomo Canevari
(Mathematical Institute, Oxford)
Abstract

From the finite Fourier transform to topological quantum field theory -- Bruce Bartlett

No image

Abstract: In 1979, Auslander and Tolimieri wrote the influential "Is computing with the finite Fourier transform pure or applied mathematics?".  It was a homage to the indivisibility of our two subjects, by demonstrating the interwoven nature of the finite Fourier transform, Gauss sums, and the finite Heisenberg group.  My talk is intended as a new chapter in this story. I will explain how all these topics come together yet again in 3-dimensional topological quantum field theory, namely Chern-Simons theory with gauge group U(1).

Defects in liquid crystals: mathematical approaches -- Giacomo Canevari

No image

Abstract: Liquid crystals are matter in an intermediate state between liquids and crystalline solids.  They are composed by molecules which can flow, but retain some form of ordering.  For instance, in the so-called nematic phase the molecules tend to align along some locally preferred directions.  However, the ordering is not perfect, and defects are commonly observed.

The mathematical theory of defects in liquid crystals combines tools from different fields, ranging from topology - which provides a convenient language to describe the main properties of defects -to calculus of variations and partial differential equations.  I will compare a few mathematical approaches to defects in nematic liquid crystals, and discuss how they relate to each other via asymptotic analysis.

Mon, 06 Jun 2016

15:45 - 16:45
L6

Hausdorff dimension and complexity of Kleinian groups

​​​Yong Hou
(IAS Princeton)
Abstract

In this talk I'll give a general presentation of my recent work that a purely loxodromic Kleinian group of Hausdorff dimension<1 is a classical Schottky group. This gives a complete classification of all Kleinian groups of dimension<1. The proof uses my earlier result on the classification of Kleinian groups of sufficiently small Hausdorff dimension. This result in conjunction to another work (joint with Anderson) provides a resolution to Bers uniformization conjecture. No prior knowledge on the subject is assumed.

Tue, 26 Apr 2016

14:15 - 15:30
L4

Multiserial and Special Multiserial Algebras

Sibylle Schroll
(Leicester)
Abstract

The class of multiserial algebras contains many well-studied examples of algebras such as the intensely-studied biserial and special biserial algebras. These, in turn, contain many of the tame algebras arising in the modular representation theory of finite groups such as tame blocks of finite groups and all tame blocks of Hecke algebras. However, unlike  biserial algebras which are of tame representation type, multiserial algebras are generally of wild representation type. We will show that despite this fact, we retain some control over their representation theory.

Wed, 01 Jun 2016

15:00 - 16:00
L6

Homology torsion growth in right angled groups

Miklos Abert
(Renyi Institute Budapest)
Abstract

Torsion in homology are invariants that have received increasing attention over the last twenty years, by the work of Lück, Bergeron, Venkatesh and others. While there are various vanishing results, no one has found a finitely presented group where the torsion in the first homology is exponential over a normal chain with trivial intersection. On the other hand, conjecturally, every 3-manifold group should be an example.

A group is right angled if it can be generated by a list of infinite order elements, such that every element commutes with its neighbors. Many lattices in higher rank Lie groups (like SL(n,Z), n>2) are right angled. We prove that for a right angled group, the torsion in the first homology has subexponential growth for any Farber sequence of subgroups, in particular, any chain of normal subgroups with trivial intersection. We also exhibit right angled cocompact lattices in SL(n,R) (n>2), for which the Congruence Subgroup Property is not known. This is joint work with Nik Nikolov and Tsachik Gelander.

Tue, 10 May 2016
14:00
L5

Linear convergence rate bounds for operator splitting methods

Goran Banjac
(Department of Engineering Science, University of Oxford)
Abstract

We establish necessary and sufficient conditions for linear convergence of operator splitting methods for a general class of convex optimization problems where the associated fixed-point operator is averaged. We also provide a tight bound on the achievable convergence rate. Most existing results establishing linear convergence in such methods require restrictive assumptions regarding strong convexity and smoothness of the constituent functions in the optimization problem. However, there are several examples in the literature showing that linear convergence is possible even when these properties do not hold. We provide a unifying analysis method for establishing linear convergence based on linear regularity and show that many existing results are special cases of our approach.

Subscribe to