Thu, 21 May 2015

16:00 - 17:00
L5

Anabelian Geometry with étale homotopy types

Jakob Stix
(University of Heidelberg)
Abstract

Classical anabelian geometry shows that for hyperbolic curves the etale fundamental group encodes the curve provided the base field is sufficiently arithmetic. In higher dimensions it is natural to replace the etale fundamental group by the etale homotopy type. We will report on progress obtained in this direction in a recent joint work with Alexander Schmidt.

 

**Joint seminar with Logic. 

Thu, 18 Jun 2015

17:30 - 18:30
L6

On the Consistency Problem for Quine's New Foundations, NF

Peter Aczel
(Manchester)
Abstract

In 1937 Quine introduced an interesting, rather unusual, set theory called New Foundations - NF for short.  Since then the consistency of NF has been a problem that remains open today.  But there has been considerable progress in our understanding of the problem. In particular NF was shown, by Specker in 1962, to be equiconsistent with a certain theory, TST^+ of simple types. Moreover Randall Holmes, who has been a long-term investigator of the problem, claims to have  solved the problem by showing that TST^+ is indeed consistent.  But the working manuscripts available on his web page that describe his possible proofs are not easy to understand - at least not by me.

 
In my talk I will introduce TST^+ and its possible models and discuss some of the interesting ideas, that I have understood, that Holmes uses in one of his possible proofs.  If there is time in my talk I will also mention a more recent approach of Jamie Gabbay who is taking a nominal sets approach to the problem.
Thu, 11 Jun 2015

17:30 - 18:30
L6

Examples of quasiminimal classes

Jonathan Kirby
(UEA)
Abstract

I will explain the framework of quasiminimal structures and quasiminimal classes, and give some basic examples and open questions. Then I will explain some joint work with Martin Bays in which we have constructed variants of the pseudo-exponential fields (originally due to Boris Zilber) which are quasimininal and discuss progress towards the problem of showing that complex exponentiation is quasiminimal. I will also discuss some joint work with Adam Harris in which we try to build a pseudo-j-function.

Thu, 04 Jun 2015

17:30 - 18:30
L5

Some effective instances of relative Manin-Mumford

Gareth Jones
(Manchester)
Abstract

In a series of recent papers David Masser and Umberto Zannier proved the relative Manin-Mumford conjecture for abelian surfaces, at least when everything is defined over the algebraic numbers. In a further paper with Daniel Bertrand and Anand Pillay they have explained what happens in the semiabelian situation, under the same restriction as above.

At present it is not clear that these results are effective. I'll discuss joint work with Philipp Habegger and Masser and with Harry Schimdt in which we show that certain very special cases can be made effective. For instance, we can effectively compute a bound on the order of a root of unity t such that the point with abscissa 2 is torsion on the Legendre curve with parameter t.

 

**Note change of room**

 

 

Thu, 21 May 2015

16:00 - 17:00
L5

Anabelian Geometry with étale homotopy types

Jakob Stix
(University of Heidelberg)
Abstract

Classical anabelian geometry shows that for hyperbolic curves the etale fundamental group encodes the curve provided the base field is sufficiently arithmetic. In higher dimensions it is natural to replace the etale fundamental group by the etale homotopy type. We will report on progress obtained in this direction in a recent joint work with Alexander Schmidt.

 

**Joint seminar with Number Theory. Note unusual time and place**

Thu, 14 May 2015

17:30 - 18:30
L6

Commutative 2-algebra, operads and analytic functors

Nicola Gambino
(Leeds)
Abstract

Standard commutative algebra is based on the notions of commutative monoid, Abelian group and commutative ring. In recent years, motivations from category theory, algebraic geometry, and mathematical logic led to the development of an area that may be called commutative 2-algebra, in which the notions used in commutative algebra are replaced by their category-theoretic counterparts (e.g. commutative monoids are replaced by  symmetric monoidal categories). The aim of this talk is to explain the analogy between standard commutative algebra and commutative 2-algebra, and to outline how this suggests counterparts of basic aspects of algebraic geometry. In particular, I will describe some joint work with Andre’ Joyal on operads and analytic functors in this context.

Thu, 07 May 2015

17:30 - 18:30
L5

Free actions of free groups on countable structures and property (T)

David Evans
(UEA)
Abstract

In joint work with Todor Tsankov, we show that the automorphism groups of countable, omega-categorical structures have Kazhdan's property (T). The proof uses Tsankov's work on the unitary representations of these groups, together with a construction of a particular free subgroup of the automorphism group.

Thu, 30 Apr 2015

17:30 - 18:30
L6

Strong type theories and their set-theoretic incarnations

Michael Rathjen
(Leeds)
Abstract

There is a tight fit between type theories à la Martin-Löf and constructive set theories such as Constructive Zermelo-Fraenkel set theory, CZF, and its extension as well as classical Kripke-Platek set theory and extensions thereof. The technology for determining their (exact) proof-theoretic strength was developed in the 1990s. The situation is rather different when it comes to type theories (with universes) having the impredicative type of propositions Prop from the Calculus of Constructions that features in some powerful proof assistants. Aczel's sets-as-types interpretation into these type theories gives rise to  rather unusual set-theoretic axioms: negative power set and negative separation. But it is not known how to determine the proof-theoretic strengths of intuitionistic set theories with such axioms via familiar classical set theories (though it is not difficult to see that ZFC plus infinitely many inaccessibles provides an upper bound). The first part of the talk will be a survey of known results from this area. The second part will be concerned with the rather special computational and proof-theoretic behavior of such theories.

Tue, 12 May 2015

17:00 - 18:00
C2

Permutation groups, primitivity and derangements

Tim Burness
(Bristol)
Abstract

Let G be a transitive permutation group. If G is finite, then a classical theorem of Jordan implies the existence of fixed-point-free elements, which we call derangements. This result has some interesting and unexpected applications, and it leads to several natural problems on the abundance and order of derangements that have been the focus of recent research. In this talk, I will discuss some of these related problems, and I will report on recent joint work with Hung Tong-Viet on primitive permutation groups with extremal derangement properties.

Subscribe to