Fri, 15 May 2015

14:00 - 15:00
L3

Towards consistent and effective modeling in the stochastic reaction-diffusion framework

Prof Stefan Engblom
(Uppsala University)
Abstract

I this talk I will try to give an overview of recent progress in
spatial stochastic modeling within the reaction-diffusion
framework. While much of the initial motivation for this work came
from problems in cell biology, I will also highlight some examples
from epidemics and neuroscience.

As a motivating introduction, some newly discovered properties of
optimal controls in stochastic enzymatic reaction networks will be
presented. I will next detail how diffusive and subdiffusive reactive
processes in realistic geometries at the cellular scale may be modeled
mesoscopically. Along the way, some different means by which these
models may be analyzed with respect to consistency and convergence
will also be discussed. These analytical techniques hint at how
effective (i.e. parallel) numerical implementations can be
designed. Large-scale simulations will serve as illustrations.

Tue, 12 May 2015

14:00 - 15:00
L3

An algorithm for optimizing nonconvex quadratic functions subject to simple bound constraints

Daniel Robinson
(Johns Hopkins University)
Abstract

I present a new method for optimizing quadratic functions subject to simple bound constraints.  If the problem happens to be strictly convex, the algorithm reduces to a highly efficient method by Dostal and Schoberl.  Our algorithm, however, is also able to efficiently solve nonconcex problems. During this talk I will present the algorithm, a sketch of the convergence theory, and numerical results for convex and nonconvex problems.

Tue, 05 May 2015

14:00 - 15:00
L3

Alternating direction methods for structured nonconvex optimization with applications in risk parity portfolio selection

Katya Scheinberg
(Lehigh University)
Abstract

We will begin by discussing the risk parity portfolio selection problem, which aims to find  portfolios for which the contributions of risk from all assets are equally weighted. The risk parity may be satisfied over either individual assets or groups of assets. We show how convex optimization techniques can find a risk parity solution in the nonnegative  orthant, however, in general cases the number of such solutions can be anywhere between zero and  exponential in the dimension. We then propose a nonconvex least-squares formulation which allows us to consider and possibly solve the general case. 

Motivated by this problem we present several alternating direction schemes for specially structured nonlinear nonconvex problems. The problem structure allows convenient 2-block variable splitting.  Our methods rely on solving convex subproblems at each iteration and converge to a local stationary point. Specifically, discuss approach  alternating directions method of multipliers and the alternating linearization method and we provide convergence rate results for both classes of methods. Moreover, global optimization techniques from polynomial optimization literature are applied to complement our local methods and to provide lower bounds.

Tue, 28 Apr 2015

14:00 - 15:00
L3

Newton-type methods for Support Vector Machines and Signal Reconstruction Problems

Kimon Fountoulakis
(University of Edinburgh)
Abstract
Support vector machines and signal reconstruction problems have initiated a resurgence of optimization methods with inexpensive iterations, namely first-order methods. The efficiency of first-order methods has been shown for several well conditioned instances. However, their practical convergence might be slow on ill-conditioned/pathological instances.
 
In this talk we will consider Newton-type methods, which aim to exploit the trade-off between inexpensive iterations and robustness. Two methods will be presented, a robust block coordinate descent method and a primal-dual Newton conjugate gradients method.  We will discuss theoretical properties of the methods and we will present numerical experiments on large scale l1-regularized logistic regression and total variation problems.
Fri, 03 Jun 2016

16:00 - 17:00
L1

Eigenvectors of Tensors

Bernd Sturmfels
(UC Berkeley)
Abstract

Eigenvectors of square matrices are central to linear algebra. Eigenvectors of tensors are a natural generalization. The spectral theory of tensors was pioneered by Lim and Qi around 2005. It has numerous applications, and ties in closely with optimization and dynamical systems.  We present an introduction that emphasizes algebraic and geometric aspects

Fri, 20 Nov 2015

16:00 - 17:00
L1

Effective behaviour of random media: From an error analysis to elliptic regularity theory

Felix Otto
(Max-Plank-Institute)
Abstract
Heterogeneous media, like a sediment, are often naturally described in statistical terms.  How to extract their effective behaviour on large scales, like the permeability in Darcy's law, from the statistical specifications?  A practioners numerical approach is to sample the medium according to these specifications and to determine the permeability in the Cartesian directions by imposing simple boundary conditions.  What is the error made in terms of the size of this "representative volume element''?  Our interest in what is called  "stochastic homogenization'' grew out of this error analysis.

 

In the course of developing such an error analysis, connections with the classical regularity theory for elliptic operators have emerged. It turns out that the randomness, in conjunction with statistical homogeneity, of the coefficient field (which can be seen as a Riemannian metric) generates large-scale regularity of harmonic functions (w.r.t. the corresponding Laplace-Beltrami operator).  This is embodied by a hierarchy of Liouville properties:
 
   Almost surely, the space of harmonic functions of given but arbitrary growth rate has the same dimension as in the flat (i. e. Euclidean) case.

 

  Classical examples show that from a deterministic point of view, the Liouville property fails already for a small growth rate:

 

  There are (smooth) coefficient fields, which correspond to the geometry of a cone at infinity, that allow for sublinearly growing but non-constant harmonic functions.
 
 
 
Subscribe to