Thu, 12 Mar 2015

16:00 - 17:00
C2

Multiplicative quiver varieties and their quantizations

Iordan Ganev
(University of Texas at Austin)
Abstract

Quiver varieties and their quantizations feature prominently in
geometric representation theory. Multiplicative quiver varieties are
group-like versions of ordinary quiver varieties whose quantizations
involve quantum groups and $q$-difference operators. In this talk, we will
define and give examples of representations of quivers, ordinary quiver
varieties, and multiplicative quiver varieties. No previous knowledge of
quivers will be assumed. If time permits, we will describe some phenomena
that occur when quantizing multiplicative quiver varieties at a root of
unity, and work-in-progress with Nicholas Cooney.

Mon, 11 May 2015

17:00 - 18:00
L4

Lipschitz Regularity for Inner Variational PDEs in 2D

Tadeusz Iwaniec
(Syracuse)
Abstract

I will present a joint work with Leonid Kovalev and Jani Onninen. The proofs are  based on topological arguments (degree theory)  and the properties  of planar  quasiconformal mappings. These new ideas  apply well to inner variational equations of conformally invariant energy integrals; in particular, to the Hopf-Laplace equation for the Dirichlet integral.

Mon, 09 Mar 2015
14:15
L3

Groupoids, meromorphic connections and divergent series

Brent Pym
(Oxford)
Abstract

A meromorphic connection on a complex curve can be interpreted as a representation of a simple Lie algebroid.  By integrating this Lie algebroid to a Lie groupoid, one obtains a complex surface on which the parallel transport of the connection is globally well-defined and holomorphic, despite the apparent singularities of the corresponding differential equations.  I will describe these groupoids and explain how they can be used to illuminate various aspects of the classical theory of singular ODEs, such as the resummation of divergent series solutions.  (This talk is based on joint work with Marco Gualtieri and Songhao Li.)

Wed, 11 Mar 2015
16:00
C2

Period 1 implies chaos … sometimes

Dr Good
(Birmingham)
Abstract

Abstract: Joint work with Syahida Che Dzul-Kifli

 

Let $f:X\to X$ be a continuous function on a compact metric space forming a discrete dynamical system. There are many definitions that try to capture what it means for the function $f$ to be chaotic. Devaney’s definition, perhaps the most frequently cited, asks for the function $f$ to be topologically transitive, have a dense set of periodic points and is sensitive to initial conditions.  Bank’s et al show that sensitive dependence follows from the other two conditions and Velleman and Berglund show that a transitive interval map has a dense set of periodic points.  Li and Yorke (who coined the term chaos) show that for interval maps, period three implies chaos, i.e. that the existence of a period three point (indeed of any point with period having an odd factor) is chaotic in the sense that it has an uncountable scrambled set.

 

The existence of a period three point is In this talk we examine the relationship between transitivity and dense periodic points and look for simple conditions that imply chaos in interval maps. Our results are entirely elementary, calling on little more than the intermediate value theorem.

Tue, 16 Jun 2015
16:00
L1

The Gömböc, the Turtle and the Evolution of Shape

Gábor Domokos
(BME Budapest)
Abstract

In 1995, celebrated Russian mathematician V.I. Arnold conjectured that, contrary to common belief, convex, homogeneous solids with just two static balance points ("weebles without a bottom weight") may exist. Ten years later, based on a constructive proof, the first such object, dubbed "Gömböc", was built. In the process leading to the discovery, several curious properties of the shape emerged and evidently some tropical turtles had evolved similar shells for the purpose of self-righting.

This Public Lecture will describe those properties as well as explain the journey of discovery, the mathematics behind the journey, the parallels with molecular biology and the latest Gömböc thinking, most notably Arnold's second major conjecture, namely that the Gömböc in Nature is not the origin, rather the ultimate goal of shape evolution.

Please email @email to register.

Mon, 09 Mar 2015

12:00 - 13:00
Fisher Room

The Coulomb branch of 3d N=4 theories

Tudor Dimofte
(IAS, Princeton)
Abstract
While the Higgs branch of a 3d N=4 gauge theory is protected from quantum corrections and its metric is easily computable, the Coulomb branch suffers both perturbative and nonperturbative corrections, and has long remained mysterious. I will present a construction of the Coulomb branch as a complex manifold, and (in principle) as a hyperkahler manifold. In particular, holomorphic functions on the Coulomb branch come from vevs of monopole operators in a chiral ring, and it turns out that this ring has a simple, quasi-abelian description. Applying the construction to linear quiver gauge theories, one finds new descriptions of singular monopole moduli spaces. I may also touch upon relations to equivariant vortex counting, geometric representation theory, and symplectic duality.
Tue, 10 Mar 2015

12:00 - 13:30
L5

Tropical Amplitudes

Piotr Tourkine
(University of Cambridge (DAMTP))
Abstract

A systematic understanding of the low energy limit of string theory scattering amplitudes is essential for conceptual and practical reasons. In this talk, I shall report on a work where this limit has been analyzed using tropical geometry. Our result is that the field theory amplitudes arising in the low energy limit of string theory are written in a very compact form as integrals over a single object, the tropical moduli space. This picture provides a general framework where the different aspects of the low energy limit of string theory scattering amplitudes are systematically encompassed; the Feynman graph structure and the ultraviolet regulation mechanism. I shall then give examples of application of the formalism, in particular at genus two, and discuss open issues.

No knowledge of tropical geometry will be assumed and the topic shall be introduced during the talk.

Wed, 04 Mar 2015

11:00 - 12:30
N3.12

Soluble Profinite Groups

Ged Corob Cook
(Royal Holloway)
Abstract

Soluble groups, and other classes of groups that can be built from simpler groups, are useful test cases for studying group properties. I will talk about techniques for building profinite groups from simpler ones, and how  to use these to investigate the cohomology of such groups and recover information about the group structure.

Thu, 05 Mar 2015

16:00 - 17:00
C2

Introduction to deformation quantization

Pavel Safronov
(Oxford)
Abstract

I will explain the basics of deformation quantization of Poisson
algebras (an important tool in mathematical physics). Roughly, it is a
family of associative algebras deforming the original commutative
algebra. Following Fedosov, I will describe a classification of
quantizations of (algebraic) symplectic manifolds.
 

Thu, 14 May 2015

16:00 - 17:00
L6

Equidistribution of Eisenstein series

Matthew Young
(Texas A&M University)
Abstract

I will discuss some recent results on the distribution of the real-analytic Eisenstein series on thin sets, such as a geodesic segment. These investigations are related to mean values of the Riemann zeta function, and have connections to quantum chaos.

Subscribe to